Характеристики положения случайной величины.

Модой (Мо)случайной величины х называется наиболее вероятное ее значение. Это определение строго относится к дискретным случайным величинам.

Для непрерывной величины модой называется такое ее значение для которого ф-ция плотности распределения имеет максимальную величину.

Медианой (Ме)случайной величины называется такое ее значение для которого окажется ли случайная величина меньше этого значения.

Для непрерывной случайной величины медиана это абсцисса точки в которой площадь под кривой распределяется пополам.

Для дискретной случайной величины значение медианы зависит от того четное или нечетное значение случайной величины

n=2k+1, то Ме=хк+1 (среднее по порядку значение)

Если значение случайных величин четное, т.е n=2k, то Характеристики положения случайной величины. - student2.ru

Математическое ожидание случайной величины.

Математическим ожиданием случайной величины х (M[x])называется средне взвешенно значение случайной величины причем в качестве весов выступают вероятности появления тех или иных значений.

Для дискретной случайной величины

Характеристики положения случайной величины. - student2.ru

Для непрерывной

Характеристики положения случайной величины. - student2.ru

С механической точки зрения мат. Ожидание это абсцисса центра тяжести системы точек расположенных по одноименной оси. Размерность мат. Ожидания совпадает с размерностью самой случайной величины.

Математическое ожидание случайной величины всегда больше наименьшего значения и меньше наибольшего.

Характеристики рассеяния.

Дисперсия

Дисперсия (D[x]) характеризует рассеивание или разряженность случайной величины около ее математического ожидания.

Для дискретных Характеристики положения случайной величины. - student2.ru

Для непрерывных

Характеристики положения случайной величины. - student2.ru

Дисперсия случайной величины всегда величина положительная

Размерность дисперсии равна квадрату разности случайной величины

Среднеквадратическое (стандартное) отклонение.

Характеристики положения случайной величины. - student2.ru

Некоторые законы распределения случайных величин.

Для дискретных случайных величин - биномиальное распределение и распределение Пуассона

Для непрерывных - равномерное показательное, экспоненциальное и нормальное распределение.

Биномиальное распределение.

Биномиальным называют законы распределения случайной величины Х числа появления некоторого события в n опытах если вероятность р появления события в каждом опыте постоянна

Характеристики положения случайной величины. - student2.ru

Сумма вероятностей представляют собой бином Ньютона

Характеристики положения случайной величины. - student2.ru

Для определения числовых характеристик в биномиальное распределение подставить вероятность которая определяется по формуле Бернули.

Характеристики положения случайной величины. - student2.ru

Характеристики положения случайной величины. - student2.ru

При биномиальном распределении дисперсия равна мат. Ожиданию умноженному на вероятность появления события в отдельном опыте.

Распределение Пуассона

Когда требуется спрогнозировать ожидаемую очередь и разумно сбалансировать число и производительность точек обслуживания и время ожидания в очереди. Пуассоновским называют закон распределения дискретной случайной величины Х числа появления некоторого события в n-независимых опытах если вероятность того, что событие появится ровно m раз определяется по формуле.

Характеристики положения случайной величины. - student2.ru a=np

n-число проведенных опытов

р-вероятность появления события в каждом опыте

В теории массового обслуживания параметр пуассоновского распределения определяется по формуле

а=λt , где λ - интенсивность потока сообщений t-время

Необходимо отметить, что пуассоновское распределение является предельным случаем биномиального, когда испытаний стремится к бесконечности, а вероятность появления события в каждом опыте стремится к 0.

Характеристики положения случайной величины. - student2.ru

Пуассоновское распределение является единичным распределением для которого такие характеристики как мат. Ожидание и дисперсия совпадают и они равны параметру этого закона распределения а.

Закон равномерной плотности

Равномерным называется распределение непрерывной случайной величины Х все значения которой лежат на отрезке [a;b] и имеют при этом постоянную плотность распределения

Характеристики положения случайной величины. - student2.ru

площадь под кривой распределения равна 1 и поэтому с(в-а)=1

Характеристики положения случайной величины. - student2.ru

вероятность попадания случайной величины Х на интервал от (α;β)

Характеристики положения случайной величины. - student2.ru

α=а, если α<а

β=в, если β>в

основные числовые характеристики закона распределения плотности вычисляются по общим формулам и они равны

Характеристики положения случайной величины. - student2.ru

Наши рекомендации