Описание документов бизнес-процесса

Составляемый документ (исходящий документ) Операция Кто состав­ляет (исполнитель) Как часто Документы-основания (входящие документы)

Проведение предпроектного обследования позволяет решить следующие задачи:

  • предварительное выявление требований к будущей системе;
  • определение структуры организации;
  • определение перечня целевых функций организации;
  • анализ распределения функций по подразделениям и сотрудникам;
  • выявление функциональных взаимодействий между подразделениями, информацион­ных потоков внутри подразделений и между ними, внешних информа­ционных воздействий;
  • анализ существующих средств автоматизации организации.

Информация, полученная в результате предпроектного обследования, анализируется с помощью методов структурного и/или объектного анализа, о которых будет сказано ниже, и используется для построения моделей деятельности организации. Модель организации предполагает построение двух видов моделей:

  • модели «как есть», отражающей существующее на момент обследования положе­ние дел в организации и позволяющей понять, каким образом функционирует дан­ная организация, а также выявить узкие места и сформулировать предложения по улучшению;
  • модели «как должно быть», отражающей представление о новых технологиях ра­боты организации. Каждая из моделей включает в себя полную функциональную и информационную модель деятельности организации, а также модель, описываю­щую динамику поведения организации (в случае необходимости).

Лекция 6. Методологии моделирования предметной области

Методологии моделирования предметной области. Структурная модель предметной области. Объектная струк­тура. Функциональная структура. Структура управления. Организационная структура. Функционально-ориенти­рованные и объектно-ориентированные методологии описания предметной области. Функциональная методика IDEF. Функциональная методика потоков данных. Объектно-ориентированная методика. Сравнение существую­щих методик. Синтетическая методика.

Описание документов бизнес-процесса - student2.ru

Описание документов бизнес-процесса - student2.ru

Описание документов бизнес-процесса - student2.ru

Структурная модель предметной области

В основе проектирования ИС лежит моделирование предметной области. Для того чтобы получить адекватный предметной области проект ИС в виде системы правильно работаю­щих программ, необходимо иметь целостное, системное представление модели, которое отражает все аспекты функционирования будущей информационной системы. При этом под моделью предметной области понимается некоторая система, имитирующая струк­туру или функционирование исследуемой предметной области и отвечающая основному требованию – быть адекватной этой области.

Предварительное моделирование предметной области позволяет сократить время и сроки проведения проектировочных работ и получить более эффективный и качественный про­ект. Без проведения моделирования предметной области велика вероятность допущения большого количества ошибок в решении стратегических вопросов, приводящих к эконо­мическим потерям и высоким затратам на последующее перепроектирование системы. Вследствие этого все современные технологии проектирования ИС основываются на ис­пользовании методологии моделирования предметной области.

К моделям предметных областей предъявляются следующие требования:

  • формализация, обеспечивающая однозначное описание структуры предметной об­ласти;
  • понятность для заказчиков и разработчиков на основе применения графических средств отображения модели;
  • реализуемость, подразумевающая наличие средств физической реализации модели предметной области в ИС;
  • обеспечение оценки эффективности реализации модели предметной области на ос­нове определенных методов и вычисляемых показателей.

Для реализации перечисленных требований, как правило, строится система моделей, которая отражает структурный и оценочный аспекты функционирования предметной об­ласти.

Структурный аспект предполагает построение:

  • объектной структуры, отражающей состав взаимодействующих в процессах матери­альных и информационных объектов предметной области;
  • функциональной структуры, отражающей взаимосвязь функций (действий) по преоб­разованию объектов в процессах;
  • структуры управления, отражающей события и бизнес-правила, которые воздейст­вуют на выполнение процессов;
  • организационной структуры, отражающей взаимодействие организационных еди­ниц предприятия и персонала в процессах;
  • технической структуры, описывающей топологию расположения и способы коммуни­кации комплекса технических средств.

Для отображения структурного аспекта моделей предметных областей в основном исполь­зуются графические методы, которые должны гарантировать представление информации о компонентах системы. Главное требование к графическим методам документирования — простота. Графические методы должны обеспечивать возможность структурной декомпо­зиции спецификаций системы с максимальной степенью детализации и согласований опи­саний на смежных уровнях декомпозиции.

С моделированием непосредственно связана проблема выбора языка представления проектных решений, позволяющего как можно больше привлекать будущих пользователей системы к ее разработке. Язык моделирования – это нотация, в основном графическая, которая используется для описания проектов. Нотация представляет собой совокупность графических объектов, используемых в модели. Нотация является синтаксисом языка мо­делирования. Язык моделирования, с одной стороны, должен делать решения проекти­ровщиков понятными пользователю, с другой стороны, предоставлять проектировщикам средства достаточно формализованного и однозначного определения проектных решений, подлежащих реализации в виде программных комплексов, образующих целостную систему программного обеспечения.

Графическое изображение нередко оказывается наиболее емкой формой представления информации. При этом проектировщики должны учитывать, что графические методы до­кументирования не могут полностью обеспечить декомпозицию проектных решений от по­становки задачи проектирования до реализации программ ЭВМ. Трудности возникают при переходе от этапа анализа системы к этапу проектирования и в особенности к программи­рованию.

Главный критерий адекватности структурной модели предметной области заключа­ется в функциональной полноте разрабатываемой ИС.

Оценочные аспекты моделирования предметной области связаны с разрабатываемыми показателями эффективности автоматизируемых процессов, к которым относятся:

  • время решения задач;
  • стоимостные затраты на обработку данных;
  • надежность процессов;
  • косвенные показатели эффективности, такие, как объемы производства, производи­тельность труда, оборачиваемость капитала, рентабельность и т.д.

Для расчета показателей эффективности, как правило, используются статические методы функционально-стоимостного анализа (ABC) и динамические методы имитационного моде­лирования.

В основе различных методологий моделирования предметной области ИС лежат принципы последовательной детализации абстрактных категорий. Обычно модели строятся на трех уровнях: на внешнем уровне (определении требований), на концептуальном уровне (спецификации требований) и внутреннем уровне (реализации требований). Так, на внешнем уровне модель отвечает на вопрос, что должна делать система, то есть опреде­ляется состав основных компонентов системы: объектов, функций, событий, организаци­онных единиц, технических средств. На концептуальном уровне модель отвечает на вопрос, как должна функционировать система? Иначе говоря, определяется характер взаимодействия компонентов системы одного и разных типов. На внутреннем уровне мо­дель отвечает на вопрос: с помощью каких программно-технических средств реализуются требования к системе? С позиции жизненного цикла ИС описанные уровни моделей соот­ветственно строятся на этапах анализа требований, логического (технического) и физиче­ского (рабочего) проектирования. Рассмотрим особенности построения моделей предмет­ной области на трех уровнях детализации.

Объектная структура

Объект — это сущность, которая используется при выполнении некоторой функции или операции (преобразования, обработки, формирования и т.д.). Объекты могут иметь дина­мическую или статическую природу: динамические объекты используются в одном цикле воспроизводства, например заказы на продукцию, счета на оплату, платежи; статические объекты используются во многих циклах воспроизводства, например, оборудование, пер­сонал, запасы материалов.

На внешнем уровне детализации модели выделяются основные виды материальных объектов (например, сырье и материалы, полуфабрикаты, готовые изделия, услуги) и ос­новные виды информационных объектов или документов (например, заказы, накладные, счета и т.д.).

На концептуальном уровне построения модели предметной области уточняется состав классов объектов, определяются их атрибуты и взаимосвязи. Таким образом строится обобщенное представление структуры предметной области.

Далее концептуальная модель на внутреннем уровне отображается в виде файлов базы данных, входных и выходных документов ЭИС. Причем динамические объекты представ­ляются единицами переменной информации или документами, а статические объекты — единицами условно-постоянной информации в виде списков, номенклатур, ценников, справочников, классификаторов. Модель базы данных как постоянно поддерживаемого информационного ресурса отображает хранение условно-постоянной и накапливаемой переменной информации, используемой в повторяющихся информационных процессах.

Функциональная структура

Функция (операция) представляет собой некоторый преобразователь входных объектов в выходные. Последовательность взаимосвязанных по входам и выходам функций состав­ляет бизнес-процесс. Функция бизнес-процесса может порождать объекты любой природы (материальные, денежные, информационные). Причем бизнес-процессы и информацион­ные процессы, как правило, неразрывны, то есть функции материального процесса не мо­гут осуществляться без информационной поддержки. Например, отгрузка готовой продук­ции осуществляется на основе документа "Заказ", который, в свою очередь, порождает документ "Накладная", сопровождающий партию отгруженного товара.

Функция может быть представлена одним действием или некоторой совокупностью дейст­вий. В последнем случае каждой функции может соответствовать некоторый процесс, в котором могут существовать свои подпроцессы, и т.д., пока каждая из подфункций не бу­дет представлять некоторую недекомпозируемую последовательность действий.

На внешнем уровне моделирования определяется список основных бизнес-функций или видов бизнес-процессов. Обычно таких функций насчитывается 15–20.

На концептуальном уровне выделенные функции декомпозируются и строятся иерар­хии взаимосвязанных функций.

На внутреннем уровне отображается структура информационного процесса в компью­тере: определяются иерархические структуры программных модулей, реализующих авто­матизируемые функции.

Структура управления

В совокупности функций бизнес-процесса возможны альтернативные или циклические по­следовательности в зависимости от различных условий протекания процесса. Эти условия связаны с происходящими событиями во внешней среде или в самих процессах и с обра­зованием определенных состояний объектов (например, заказ принят, отвергнут, отправ­лен на корректировку). События вызывают выполнение функций, которые, в свою оче­редь, изменяют состояния объектов и формируют новые события, и т.д., пока не будет за­вершен некоторый бизнес-процесс. Тогда последовательность событий составляет кон­кретную реализацию бизнес-процесса.

Каждое событие описывается с двух точек зрения: информационной и процедурной. Информационно событие отражается в виде некоторого сообщения, фиксирующего факт выполнения некоторой функции изменения состояния или появления нового. Процедурно событие вызывает выполнение новой функции, и поэтому для каждого состояния объекта должны быть заданы описания этих вызовов. Таким образом, события выступают в свя­зующей роли для выполнения функций бизнес-процессов.

На внешнем уровне определяются список внешних событий, вызываемых взаимодейст­вием предприятия с внешней средой (платежи налогов, процентов по кредитам, поставки по контрактам и т.д.), и список целевых установок, которым должны соответствовать биз­нес-процессы (регламент выполнения процессов, поддержка уровня материальных запа­сов, уровень качества продукции и т.д.).

На концептуальном уровне устанавливаются бизнес-правила, определяющие условия вызова функций при возникновении событий и достижении состояний объектов.

На внутреннем уровне выполняется формализация бизнес-правил в виде триггеров или вызовов программных модулей.

Организационная структура

Организационная структура представляет собой совокупность организационных единиц, как правило, связанных иерархическими и процессными отношениями. Организационная единица — это подразделение, представляющее собой объединение людей (персонала) для выполнения совокупности общих функций или бизнес-процессов. В функционально-ориентированной организационной структуре организационная единица выполняет набор функций, относящихся к одной функции управления и входящих в различные процессы. В процессно-ориентированной структуре организационная единица выполняет набор функ­ций, входящих в один тип процесса и относящихся к разным функциям управления.

На внешнем уровне строится структурная модель предприятия в виде иерархии подчи­нения организационных единиц или списков взаимодействующих подразделений.

На концептуальном уровне для каждого подразделения задается организационно-штатная структура должностей (ролей персонала).

На внутреннем уровне определяются требования к правам доступа персонала к автома­тизируемым функциям информационной системы.

Техническая структура

Топология определяет территориальное размещение технических средств по структурным подразделениям предприятия, а коммуникация — технический способ реализации взаимо­действия структурных подразделений.

На внешнем уровне модели определяются типы технических средств обработки данных и их размещение по структурным подразделениям.

На концептуальном уровне определяется способы коммуникаций между техническими комплексами структурных подразделений: физическое перемещение документов, машин­ных носителей, обмен информацией по каналам связи и т.д.

На внутреннем уровне строится модель "клиент-серверной" архитектуры вычислитель­ной сети.

Описанные модели предметной области нацелены на проектирование отдельных компо­нентов ИС: данных, функциональных программных модулей, управляющих программных модулей, программных модулей интерфейсов пользователей, структуры технического комплекса. Для более качественного проектирования указанных компонентов требуется построение моделей, увязывающих различные компоненты ИС между собой. В простейшем случае в качестве таких моделей взаимодействия могут использоваться матрицы перекре­стных ссылок: "объекты-функции", "функции-события", "организационные единицы — функции", "организационные единицы — объекты", "организационные единицы — техни­ческие средства" и т д. Такие матрицы не наглядны и не отражают особенности реализа­ции взаимодействий.

Для правильного отображения взаимодействий компонентов ИС важно осуществлять со­вместное моделирование таких компонентов, особенно с содержательной точки зрения объектов и функций. Методология структурного системного анализа существенно помо­гает в решении таких задач.

Структурным анализом принято называть метод исследования системы, которое начи­нается с ее общего обзора, а затем детализируется, приобретая иерархическую структуру с все большим числом уровней. Для таких методов характерно: разбиение на уровни аб­стракции с ограниченным числом элементов (от 3 до 7); ограниченный контекст, вклю­чающий только существенные детали каждого уровня; использование строгих формаль­ных правил записи; последовательное приближение к результату. Структурный анализ основан на двух базовых принципах – "разделяй и властвуй" и принципе иерархической упорядоченности. Решение трудных проблем путем их разбиения на множество меньших независимых задач (так называемых "черных ящиков") и организация этих задач в древо­видные иерархические структуры значительно повышают понимание сложных систем. Оп­ределим ключевые понятия структурного анализа.

Операция – элементарное (неделимое) действие, выполняемое на одном рабочем месте.

Функция – совокупность операций, сгруппированных по определенному признаку.

Бизнес-процесс — связанная совокупность функций, в ходе выполнения которой по­требляются определенные ресурсы и создается продукт (предмет, услуга, научное откры­тие, идея), представляющая ценность для потребителя.

Подпроцесс – это бизнес-процесс, являющийся структурным элементом некоторого биз­нес-процесса и представляющий ценность для потребителя.

Бизнес-модель – структурированное графическое описание сети процессов и операций, связанных с данными, документами, организационными единицами и прочими объектами, отражающими существующую или предполагаемую деятельность предприятия.

Существуют различные методологии структурного моделирования предметной области, среди которых следует выделить функционально-ориентированные и объектно-ори­ентированные методологии.

Функционально-ориентированные и объектно-ориентиро­ванные методологии описания предметной области

Процесс бизнес-моделирования может быть реализован в рамках различных методик, от­личающихся прежде всего своим подходом к тому, что представляет собой моделируемая организация. В соответствии с различными представлениями об организации методики принято делить на объектные и функциональные (структурные).

Объектные методики рассматривают моделируемую организацию как набор взаимодейст­вующих объектов – производственных единиц. Объект определяется как осязаемая ре­альность – предмет или явление, имеющие четко определяемое поведение. Целью приме­нения данной методики является выделение объектов, составляющих организацию, и рас­пределение между ними ответственностей за выполняемые действия.

Функциональные методики, наиболее известной из которых является методика IDEF, рас­сматривают организацию как набор функций, преобразующий поступающий поток инфор­мации в выходной поток. Процесс преобразования информации потребляет определенные ресурсы. Основное отличие от объектной методики заключается в четком отделении функций (методов обработки данных) от самих данных.

С точки зрения бизнес-моделирования каждый из представленных подходов обладает своими преимуществами. Объектный подход позволяет построить более устойчивую к из­менениям систему, лучше соответствует существующим структурам организации. Функ­циональное моделирование хорошо показывает себя в тех случаях, когда организацион­ная структура находится в процессе изменения или вообще слабо оформлена. Подход от выполняемых функций интуитивно лучше понимается исполнителями при получении от них информации об их текущей работе.

Функциональная методика IDEF0

Методологию IDEF0 можно считать следующим этапом развития хорошо известного графи­ческого языка описания функциональных систем SADT (Structured Analysis and Design Teqnique). Исторически IDEF0 как стандарт был разработан в 1981 году в рамках обшир­ной программы автоматизации промышленных предприятий, которая носила обозначение ICAM (Integrated Computer Aided Manufacturing). Семейство стандартов IDEF унаследовало свое обозначение от названия этой программы (IDEF=Icam DEFinition), и последняя его редакция была выпущена в декабре 1993 года Национальным Институтом по Стандартам и Технологиям США (NIST).

Целью методики является построение функциональной схемы исследуемой системы, опи­сывающей все необходимые процессы с точностью, достаточной для однозначного моде­лирования деятельности системы.

В основе методологии лежат четыре основных понятия: функциональный блок, ин­терфейсная дуга, декомпозиция, глоссарий.

Функциональный блок (Activity Box) представляет собой некоторую конкретную функ­цию в рамках рассматриваемой системы. По требованиям стандарта название каждого функционального блока должно быть сформулировано в глагольном наклонении (напри­мер, "производить услуги"). На диаграмме функциональный блок изображается прямо­угольником (рис. 6.1). Каждая из четырех сторон функционального блока имеет свое опре­деленное значение (роль), при этом:

  • верхняя сторона имеет значение "Управление" (Control);
  • левая сторона имеет значение "Вход" (Input);
  • правая сторона имеет значение "Выход" (Output);
  • нижняя сторона имеет значение "Механизм" (Mechanism).

Описание документов бизнес-процесса - student2.ru
Рис. 6.1. Функциональный блок

Интерфейсная дуга (Arrow) отображает элемент системы, который обрабатывается функциональным блоком или оказывает иное влияние на функцию, представленную дан­ным функциональным блоком. Интерфейсные дуги часто называют потоками или стрел­ками.

С помощью интерфейсных дуг отображают различные объекты, в той или иной степени определяющие процессы, происходящие в системе. Такими объектами могут быть эле­менты реального мира (детали, вагоны, сотрудники и т.д.) или потоки данных и информа­ции (документы, данные, инструкции и т.д.).

В зависимости от того, к какой из сторон функционального блока подходит данная интер­фейсная дуга, она носит название "входящей", "исходящей" или "управляющей".

Необходимо отметить, что любой функциональный блок по требованиям стандарта должен иметь, по крайней мере, одну управляющую интерфейсную дугу и одну исходящую. Это и понятно – каждый процесс должен происходить по каким-то правилам (отображаемым управляющей дугой) и должен выдавать некоторый результат (выходящая дуга), иначе его рассмотрение не имеет никакого смысла.

Обязательное наличие управляющих интерфейсных дуг является одним из главных отли­чий стандарта IDEF0 от других методологий классов DFD (Data Flow Diagram) и WFD (Work Flow Diagram).

Декомпозиция (Decomposition) является основным понятием стандарта IDEF0. Принцип декомпозиции применяется при разбиении сложного процесса на составляющие его функ­ции. При этом уровень детализации процесса определяется непосредственно разработчи­ком модели.

Декомпозиция позволяет постепенно и структурированно представлять модель системы в виде иерархической структуры отдельных диаграмм, что делает ее менее перегруженной и легко усваиваемой.

Последним из понятий IDEF0 является глоссарий (Glossary). Для каждого из элементов IDEF0 — диаграмм, функциональных блоков, интерфейсных дуг — существующий стан­дарт подразумевает создание и поддержание набора соответствующих определений, клю­чевых слов, повествовательных изложений и т.д., которые характеризуют объект, отобра­женный данным элементом. Этот набор называется глоссарием и является описанием сущности данного элемента. Глоссарий гармонично дополняет наглядный графический язык, снабжая диаграммы необходимой дополнительной информацией.

Модель IDEF0 всегда начинается с представления системы как единого целого – одного функционального блока с интерфейсными дугами, простирающимися за пределы рассмат­риваемой области. Такая диаграмма с одним функциональным блоком называется кон­текстной диаграммой.

В пояснительном тексте к контекстной диаграмме должна быть указана цель (Purpose) построения диаграммы в виде краткого описания и зафиксирована точка зрения (Viewpoint).

Определение и формализация цели разработки IDEF0-модели является крайне важным моментом. Фактически цель определяет соответствующие области в исследуемой системе, на которых необходимо фокусироваться в первую очередь.

Точка зрения определяет основное направление развития модели и уровень не­обходимой детализации. Четкое фиксирование точки зрения позволяет разгрузить мо­дель, отказавшись от детализации и исследования отдельных элементов, не являющихся необходимыми, исходя из выбранной точки зрения на систему. Правильный выбор точки зрения существенно сокращает временные затраты на построение конечной модели.

Выделение подпроцессов. В процессе декомпозиции функциональный блок, который в контекстной диаграмме отображает систему как единое целое, подвергается детализации на другой диаграмме. Получившаяся диаграмма второго уровня содержит функциональ­ные блоки, отображающие главные подфункции функционального блока контекстной диа­граммы, и называется дочерней (Child Diagram) по отношению к нему (каждый из функ­циональных блоков, принадлежащих дочерней диаграмме, соответственно называется до­черним блоком – Child Box). В свою очередь, функциональный блок — предок называется родительским блоком по отношению к дочерней диаграмме (Parent Box), а диаграмма, к которой он принадлежит – родительской диаграммой (Parent Diagram). Каждая из под­функций дочерней диаграммы может быть далее детализирована путем аналогичной де­композиции соответствующего ей функционального блока. В каждом случае декомпозиции функционального блока все интерфейсные дуги, входящие в данный блок или исходящие из него, фиксируются на дочерней диаграмме. Этим достигается структурная целостность IDEF0–модели.

Иногда отдельные интерфейсные дуги высшего уровня не имеет смысла продолжать рас­сматривать на диаграммах нижнего уровня, или наоборот — отдельные дуги нижнего от­ражать на диаграммах более высоких уровней – это будет только перегружать диаграммы и делать их сложными для восприятия. Для решения подобных задач в стандарте IDEF0 предусмотрено понятие туннелирования. Обозначение "туннеля" (Arrow Tunnel) в виде двух круглых скобок вокруг начала интерфейсной дуги обозначает, что эта дуга не была унаследована от функционального родительского блока и появилась (из "туннеля") только на этой диаграмме. В свою очередь, такое же обозначение вокруг конца (стрелки) интер­фейсной дуги в непосредственной близи от блока–приемника означает тот факт, что в до­черней по отношению к этому блоку диаграмме эта дуга отображаться и рассматриваться не будет. Чаще всего бывает, что отдельные объекты и соответствующие им интерфейс­ные дуги не рассматриваются на некоторых промежуточных уровнях иерархии, – в таком случае они сначала "погружаются в туннель", а затем при необходимости "возвращаются из туннеля".

Обычно IDEF0-модели несут в себе сложную и концентрированную информацию, и для того, чтобы ограничить их перегруженность и сделать удобочитаемыми, в стандарте при­няты соответствующие ограничения сложности.

Рекомендуется представлять на диаграмме от трех до шести функциональных блоков, при этом количество подходящих к одному функциональному блоку (выходящих из одного функционального блока) интерфейсных дуг предполагается не более четырех.

Стандарт IDEF0 содержит набор процедур, позволяющих разрабатывать и согласовывать модель большой группой людей, принадлежащих к разным областям деятельности моде­лируемой системы. Обычно процесс разработки является итеративным и состоит из сле­дующих условных этапов:

  • Создание модели группой специалистов, относящихся к различным сферам деятельно­сти предприятия. Эта группа в терминах IDEF0 называется авторами (Authors). Построение первоначальной модели является динамическим процессом, в течение которого авторы опрашивают компетентных лиц о структуре различных процессов, создавая модели деятельности подразделений. При этом их интересуют ответы на следующие вопросы:

Что поступает в подразделение "на входе"?

    • Какие функции и в какой последовательности выполняются в рамках подразде­ления?
    • Кто является ответственным за выполнение каждой из функций?
    • Чем руководствуется исполнитель при выполнении каждой из функций?
    • Что является результатом работы подразделения (на выходе)?

На основе имеющихся положений, документов и результатов опросов создается черновик (Model Draft) модели.

  • Распространение черновика для рассмотрения, согласований и комментариев. На этой стадии происходит обсуждение черновика модели с широким кругом компе­тентных лиц (в терминах IDEF0 — читателей) на предприятии. При этом каждая из диаграмм черновой модели письменно критикуется и комментируется, а затем пе­редается автору. Автор, в свою очередь, также письменно соглашается с критикой или отвергает ее с изложением логики принятия решения и вновь возвращает от­корректированный черновик для дальнейшего рассмотрения. Этот цикл продолжа­ется до тех пор, пока авторы и читатели не придут к единому мнению.
  • Официальное утверждение модели. Утверждение согласованной модели происходит руководителем рабочей группы в том случае, если у авторов модели и читателей отсутствуют разногласия по поводу ее адекватности. Окончательная модель пред­ставляет собой согласованное представление о предприятии (системе) с заданной точки зрения и для заданной цели.

Наглядность графического языка IDEF0 делает модель вполне читаемой и для лиц, кото­рые не принимали участия в проекте ее создания, а также эффективной для проведения показов и презентаций. В дальнейшем на базе построенной модели могут быть организо­ваны новые проекты, нацеленные на производство изменений в модели.

Функциональная методика потоков данных

Целью методики является построение модели рассматриваемой системы в виде диаграммы потоков данных (Data Flow Diagram — DFD), обеспечивающей правильное описание выхо­дов (отклика системы в виде данных) при заданном воздействии на вход системы (подаче сигналов через внешние интерфейсы). Диаграммы потоков данных являются основным средством моделирования функциональных требований к проектируемой системе.

При создании диаграммы потоков данных используются четыре основных понятия: по­токи данных, процессы (работы) преобразования входных потоков данных в вы­ходные, внешние сущности, накопители данных (хранилища).

Потоки данных являются абстракциями, использующимися для моделирования передачи информации (или физических компонент) из одной части системы в другую. Потоки на диаграммах изображаются именованными стрелками, ориентация которых указывает на­правление движения информации.

Назначение процесса (работы) состоит в продуцировании выходных потоков из входных в соответствии с действием, задаваемым именем процесса. Имя процесса должно содер­жать глагол в неопределенной форме с последующим дополнением (например, "получить документы по отгрузке продукции"). Каждый процесс имеет уникальный номер для ссылок на него внутри диаграммы, который может использоваться совместно с номером диа­граммы для получения уникального индекса процесса во всей модели.

Хранилище (накопитель) данных позволяет на указанных участках определять дан­ные, которые будут сохраняться в памяти между процессами. Фактически хранилище представляет "срезы" потоков данных во времени. Информация, которую оно содержит, может использоваться в любое время после ее получения, при этом данные могут выби­раться в любом порядке. Имя хранилища должно определять его содержимое и быть су­ществительным.

Внешняя сущность представляет собой материальный объект вне контекста системы, являющейся источником или приемником системных данных. Ее имя должно содержать существительное, например, "склад товаров". Предполагается, что объекты, представлен­ные как внешние сущности, не должны участвовать ни в какой обработке.

Кроме основных элементов, в состав DFD входят словари данных и миниспецификации.

Словари данных являются каталогами всех элементов данных, присутствующих в DFD, включая групповые и индивидуальные потоки данных, хранилища и процессы, а также все их атрибуты.

Миниспецификации обработки — описывают DFD-процессы нижнего уровня. Фактиче­ски миниспецификации представляют собой алгоритмы описания задач, выполняемых процессами: множество всех миниспецификаций является полной спецификацией сис­темы.

Процесс построения DFD начинается с создания так называемой основной диаграммы типа "звезда", на которой представлен моделируемый процесс и все внешние сущности, с кото­рыми он взаимодействует. В случае сложного основного процесса он сразу представляется в виде декомпозиции на ряд взаимодействующих процессов. Критериями сложности в данном случае являются: наличие большого числа внешних сущностей, многофункцио­нальность системы, ее распределенный характер. Внешние сущности выделяются по от­ношению к основному процессу. Для их определения необходимо выделить поставщиков и потребителей основного процесса, т.е. все объекты, которые взаимодействуют с основным процессом. На этом этапе описание взаимодействия заключается в выборе глагола, даю­щего представление о том, как внешняя сущность использует основной процесс или ис­пользуется им. Например, основной процесс – "учет обращений граждан", внешняя сущ­ность – "граждане", описание взаимодействия – "подает заявления и получает ответы". Этот этап является принципиально важным, поскольку именно он определяет границы мо­делируемой системы.

Для всех внешних сущностей строится таблица событий, описывающая их взаимодействие с основным потоком. Таблица событий включает в себя наименование внешней сущности, событие, его тип (типичный для системы или исключительный, реализующийся при опре­деленных условиях) и реакцию системы.

На следующем шаге происходит декомпозиция основного процесса на набор взаимосвя­занных процессов, обменивающихся потоками данных. Сами потоки не конкретизируются, определяется лишь характер взаимодействия. Декомпозиция завершается, когда процесс становится простым, т.е.:

  1. процесс имеет два-три входных и выходных потока;
  2. процесс может быть описан в виде преобразования входных данных в выходные;
  3. процесс может быть описан в виде последовательного алгоритма.

Для простых процессов строится миниспецификация – формальное описание алгоритма преобразования входных данных в выходные.

Миниспецификация удовлетворяет следующим требованиям: для каждого процесса стро­ится одна спецификация; спецификация однозначно определяет входные и выходные по­токи для данного процесса; спецификация не определяет способ преобразования входных потоков в выходные; спецификация ссылается на имеющиеся элементы, не вводя новые; спецификация по возможности использует стандартные подходы и операции.

После декомпозиции основного процесса для каждого подпроцесса строится аналогичная таблица внутренних событий.

Следующим шагом после определения полной таблицы событий выделяются потоки дан­ных, которыми обмениваются процессы и внешние сущности. Простейший способ их вы­деления заключается в анализе таблиц событий. События преобразуются в потоки данных от инициатора события к запрашиваемому процессу, а реакции – в обратный поток собы­тий. После построения

Наши рекомендации