Простой арифметической задачей называется задача, которая решается одним арифметическим действием.
Простые задачи играют чрезвычайно важную роль при обучении учащихся математике. Именно простые задачи позволяют раскрыть основной смысли конкретизировать арифметические действия, сознательно овладеть теми или иными математическими знаниями. На простой задаче учитель впервые знакомит учащихся со структурой задачи, показывает, что значит решить задачу, вооружает их основными приемами решения задач.
Простые задачи являются составной частью сложных задач, а следовательно, формируя умение решать простые задачи, учитель готовит учащихся к решению сложных задач. В школе VIII вида решаются задачи, раскрывающие конкретный смысл арифметических действий (I группа). Это задачи на нахождение суммы и на нахождение остатка (1-й класс), на нахождение произведения (суммы одинаковых слагаемых), на деление на равные части (3-й класс), на деление по содержанию (3-й класс).
Решаются также задачи, раскрывающие новый смысл арифметических действий. Это задачи, связанные с понятием разности и отношения (II группа):
1. Увеличение и уменьшение числа на несколько единиц.
2. Разностное сравнение чисел с вопросами «на сколько больше…» , «на сколько меньше…».
3. Увеличение и уменьшение числа на несколько раз.
4. Краткое сравнение чисел или нахождение отношения двух чисел с вопросами: «Во сколько раз 6ольше...», «Во сколько раз меньше...».
К задачам, раскрывающим зависимость между компонентами и результатами арифметических действий (III группа), относятся задачи на нахождение неизвестного слагаемого, на нахождение неизвестного уменьшаемого, неизвестного вычитаемого.
В школе VIII вида на каждом году обучения учащиеся знакомятся с новыми видами простых задач. Постепенное введение их объясняется различной степенью трудности математических понятий, местом изучения тех арифметических действий, конкретный смысл которых они раскрывают.
Последовательность решения простых задач определена программой по математике школы VIII вида. Однако при выборе задач определенного вида учитель должен руководствоваться и некоторыми методическими требованиями.
Сюжетные задачи составляются с однородными и неоднородными предметами, в них входят обобщающие слова.
Опыт показывает, что при обучении решению задач определенного вида целесообразнее сначала предъявлять сюжетные задачи с однородными предметами. Например: «В корзине 5 яблок, туда положили еще 3 яблока. Сколько всего яблок стало в корзине?».
Затем вводятся сюжетные задачи с однородными предметами, отличающимися теми или иными признаками: цветом, размером, материалом и т. д. Например: «В корзине лежало 5 больших яблок, туда положили еще 3 маленьких яблока. Сколько всего яблок стало в корзине?» Наконец, вводятся задачи, в которых имеются обобщающие слова. Например: «В корзине лежало 5 яблок, туда положили 3 груши. Сколько всего фруктов в корзине?» При решении задач такого содержания учащиеся затрудняются в выборе наименований при записи действий, в осмыслении числа, полученного в ответе. Решение такого рода задач требует более тщательного анализа содержания, выбора наименования числовых данных еще до записи решения задачи.
Не менее пристального внимания учителя при выборе задач данного вида заслуживает и конкретизация их содержания. Выше уже говорилось о том, что для иллюстрации задач нового вида, особенно в младших классах, используются предметные пособия, изображения предметов в виде трафаретов, рисунки, символы предметов и др. Однако исследования и наблюдения показывают, что учащиеся лучше понимают предметную ситуацию задачи, если они сами выполняют определенные операции с предметами или их изображениями или если задача инсценируется. Поэтому целесообразно знакомить учащихся с новыми видами задач на задачах‑ инструкциях («Положи в коробку 3 карандаша. Возьми оттуда 1 карандаш. Сколько карандашей осталось в коробке?»), задачах-инсценировках («Учительница дала трем ученикам по 2 тетради (раздает трем ученикам тетради). Сколько всего тетрадей получили ученики?»). Затем следует переходить к решению задач, содержание которых учащиеся могут зарисовать, изображая в рисунке сами предметы или их символы. («В пруду плавало 7 уток и 3 гуся. Сколько всего птиц плавало в пруду?») Учащиеся конкретизируют задачу трафаретами птиц или рисуют 7 квадратов и 3 круга, изображая символически уток квадратами, а гусей - кругами.
Вопрос записывается не полностью, а с помощью символов: круглая, квадратная или фигурная скобка символизирует сумму, а знак вопроса (?), что эта сумма неизвестна.
Наконец, учитель учит конкретизировать содержание задачи, вскрывая зависимость между данными и искомыми с помощью различных форм краткой записи (см. с. 349-350).