Понятие компьютерных сетей и сетевых технологий. Классификация компьютерных сетей.

Структуры БД

Иерархическая структура базы данныхЭто древовидная структура представления информации. Ее особенность в том, что каждый узел на более низком уровне имеет связь только с одним узлом на более высоком уровне.

Сетевая структура базы данныхПо сути, это расширение иерархической структуры. Все то же самое, но существует связь "многие ко многим". Недостатком сетевой модели является сложность разработки серьезных приложений.

Реляционная структура базы данныхВсе данные представлены в виде простых таблиц, разбитых на строки и столбцы, на пересечении которых расположены данные.

Объектно-ориентированные и гибридные базы данныхВ объектно-ориентированных базах данных данные хранятся в виде объектов, что очень удобно. Но на сегодняшний день такие БД еще распространенны, т.к. уступают в производительности реляционным.
Гибридные БД совмещают в себе возможности реляционных и объектно-ориентированных, поэтому их часто называют объектно-реляционными. Примером такой СУБД является Oracle, начиная с восьмой версии.

16 База данных – это организованная структура, предназначенная для хранения информации. В современных базах данных хранятся не только данные, но и информация.

С понятием базы данных тесно связано понятие системы управления базой данных. Это комплекс программных средств, предназначенных для создания структуры новой базы, наполнение ее содержимым, редактирования содержимого и визуализации информации. Под визуализацией информации базы понимается отбор отображаемых данных в соответствии с заданным критерием, их упорядочение, оформление и последующая выдача на устройства вывода или передачи по каналам связи.

Состав СУБДЯзык описания данных (ЯОД) – средства описания данных в БД и связей между ними. Средствами этого языка описывается структура БД, форматы записей, пароли, защищающие данные. Язык манипулирования данными (ЯМД) – язык для выполнения операций над данными, позволяющий менять их строение.

Основные функции СУБД

· управление данными во внешней памяти (на дисках);

· управление данными в оперативной памяти с использованием дискового кэша;

· журнализация изменений, резервное копирование и восстановление б д после сбоев;

· поддержка языков БД (язык определения данных, язык манипулирования данными).

Обычно современная СУБД содержит следующие компоненты:

· ядро, которое отвечает за управление данными во внешней и оперативной памяти и журнализацию,

· процессор языка базы данных, обеспечивающий оптимизацию запросов на извлечение и изменение данных и создание, как правило, машинно-независимого исполняемого внутреннего кода,

· подсистему поддержки времени исполнения, которая интерпретирует программы манипуляции данными, создающие пользовательский интерфейс с СУБД

· а также сервисные программы (внешние утилиты), обеспечивающие ряд дополнительных возможностей по обслуживанию информационной системы.

Режимы работы с базами данных

Обычно с базами данных работаю две категории пользователей. Первая категория – проектировщики. Их задача состоит в разработке структуры таблиц базы данных и согласование ее с заказчиком. Кроме таблиц проектировщики разрабатывают и другие объекты базы данных, предназначенные, с одной стороны, для автоматизации работы с базой, а с другой стороны – для ограничения функциональных возможностей работы с базой (если это необходимо из соображений безопасности).Вторая категория исполнителей, работающих с базами данных, - пользователи. Они получают исходную базу данных от проектировщиков и занимаются ее наполнением и обслуживанием. В общем случае пользователи не имеют средств доступа к управлению структурой базы – только к данным, да и то не ко всем, а к тем, работа с которыми предусмотрена на конкретном рабочем месте.

Соответственно СУБД имеет два режима работы: проектировочный и пользовательский. Первый режим предназначен для создания или изменения структуры базы и создание ее объектов. Во втором режиме происходит использование ранее подготовленных объектов для наполнения базы или получения данных из нее.

Направления развития

Понятие компьютерных сетей и сетевых технологий. Классификация компьютерных сетей. - student2.ru

19 Оценка информационной безопасности (ИБ): стандарты и классы ИБ, требования к ИБ.

Угроза безопасности информации —совокупность условий и факторов, создающих потенциальную или реально существующую опасность, связанную с утечкой информации и/или несанкционированными и/или непреднамеренными воздействиями на нее.

Стандарт ISOсодержит практические правила по управлению информационной безопасностью и может использоваться в качестве критериев для оценки механизмов безопасности организационного уровня, включая административные, процедурные и физические меры защиты.

Ключевыми являются следующие средства контроля:

· Документ о политике информационной безопасности;· Распределение обязанностей по обеспечению информационной безопасности;·Обучение и подготовка персонала к поддержанию режима информационной безопасности;· Уведомление о случаях нарушения защиты;· Средства защиты от вирусов;· Планирование бесперебойной работы организации;· Контроль над копированием программного обеспечения, защищенного законом об авторском праве;· Защита документации организации;· Защита данных;· Контроль соответствия политике безопасности.

«Оранжевая книга» - документ стал первым стандартом в области создания защищенных компьютерных систем и впоследствии основой организации системы их сертификации по критериям защиты информации.

В «Оранжевой книге» дано определение безопасной системы - это система, которая посредством специальных механизмов защиты контролирует доступ к информации.

В класс D попадают системы, оценка которых выявила их несоответствие требованиям всех других классов. Минимальная защита

Класс C1: ИС должна управлять доступом именованных пользователей к именованным объектам; пользователи должны идентифицировать себя до выполнения каких-либо контролируемых ИС действий; ИС должна быть защищена от внешних воздействий и от попыток слежения за ходом работы. защита, основанная на разграничении доступа

Класс C2 (в дополнение к C1): все объекты должны подвергаться контролю доступа; каждый пользователь системы должен уникальным образом идентифицироваться; каждое регистрируемое действие должно ассоциироваться с конкретным пользователем; ликвидация всех следов внутреннего использования объектов ИС. Защита, основанная на управляемом контроле доступом

Класс B1 (в дополнение к C2): каждый хранимый объект ИС должен иметь отдельную идентификационную метку; ИС должна обеспечить реализацию принудительного управления доступом к хранимым объектам. Мандатная защита, основанная на присваивании меток объектам и субъектам, находящимся под контролем

Класс B2 (в дополнение к B1): должна быть предусмотрена возможность регистрации событий, связанных с организацией тайных каналов обмена информацией; ИС должна быть внутренне структурирована и демонстрировать устойчивость к попыткам проникновения. Структурированная защита

Класс B3 (в дополнение к B2): для управления доступом должны использоваться списки управления доступом с указанием разрешенных режимов; должна быть предусмотрена возможность регистрации появления или накопления событий, несущих угрозу политике ИБ. Домены безопасности

Класс A1 (в дополнение к B3): тестирование должно продемонстрировать, что реализация ИС соответствует формальным спецификациям; механизм управления ИБ должен распространяться на весь жизненный цикл и все компоненты системы, имеющие отношение к обеспечению безопасности. Верифицированный проект

Организационные

Кодирование — это преобразование информации из одной ее формы представления в другую, наиболее удобную для её хранения, передачи или обработки.
Цели кодирования заключаются в доведении идеи отправителя до получателя, обеспечении такой интерпретации полученной информации получателем, которая соответствует замыслу отправителя. Для этого используются специальные системы кодов, состоящие из символов и знаков. Код представляет собой систему условных знаков (символов), предназначенных для представления информации по определенным правилам. В настоящее время понятие «код» трактуется по-разному.
Декодирование — процесс восстановления изначальной формы представления информации, т. е. обратный процесс кодирования, при котором закодированное сообщение переводится на язык, понятный получателю. В более широком плане это: а) процесс придания определенного смысла полученным сигналам; б) процесс выявления первоначального замысла, исходной идеи отправителя, понимания смысла его сообщения.

23 Организационно-правовые аспекты защиты информации и авторское право.

Необходимость организационно-правового обеспечения защиты информации вытекает из факта признания за информацией статуса продукта общественного производства, установления в законодательном порядке права собственности на информацию.

Организационно-правовое обеспечение является многоаспектным понятием, включающим законы, решения, нормативы и правила. Причем, применительно к защите информации, обрабатываемой в автоматизированной системе, оно имеет ряд принципиальных специфических особенностей: представлением информации в непривычной и неудобочитаемой для человека двоичной форме; использованием носителей информации, записи на которых недоступны для простого визуального просмотра; возможностью многократного копирования информации без оставления каких-либо следов; легкостью изменения любых элементов информации без оставления следов типа подчисток-, исправления и т.п.; невозможностью традиционного скрепления документов традиционными подписями со всеми нормативно-правовыми аспектами этих подписей; наличием большого числа нетрадиционных дестабилизирующих факторов, оказывающих влияние на защищенность информации.

Комплекс вопросов, решаемых организационно-правовым обеспечением, может быть сгруппирован в 3 класса: организационно-правовая основа защиты информации в АС; технико-математические аспекты организационно-правового обеспечения; юридические аспекты организационно-правового обеспечения защиты.

Организационно-правовая основа защиты информации должна включать: определение подразделений и лиц, ответственных за организацию защиты информации; нормативно-правовые, руководящие и методические материалы (документы) по защите информации; меры ответственности за нарушение правил защиты; порядок разрешения спорных и конфликтных ситуаций по вопросам защиты информации.

Под технико-математическими аспектами организационно-правового обеспечения понимается совокупность технических средств, математических методов, моделей, алгоритмов и программ, с помощью которых АСмогут быть соблюдены все условия, необходимые для юридического разграничения прав и ответственности относительно регламентов обращения с защищаемой информацией. Основные условия: фиксация на документе персональных идентификаторов ("подписей") лиц, изготовивших документ и (или) несущих ответственность за него;

Под юридическими аспектами организационно-правового обеспечения защиты информации в АС понимается совокупность законов и других нормативно-правовых актов, с помощью которых достигаются следующие цели; устанавливается обязательность соблюдения всеми лицами, имеющими отношение к АС всех правил защиты информации; узакониваются меры ответственности за нарушение правил защиты;

Законодательство РБ об авторском праве состоит из положений Конституции РБ, Гражданского кодекса РБ, Закона «Об авторском праве и смежных правах», декретов и указов Президента и иных актов законодательства. Компьютерные программы Законом РБ «Об авторском праве и смежных правах» относятся к объектам авторского права. Компьютерная программа определяется в Законе как «упорядоченная совокупность команд и данных для получения определенного результата с помощью компьютера, записанная на материальном носителе, а также сопутствующая электронная документация». «Компьютерные программы охраняются как литературные произведения, и такая охрана распространяется на все виды программ, в том числе на прикладные программы и операционные системы, которые могут быть выражены на любом языке и в любой форме, включая исходный текст и объектный код». Авторское право на комп программу возникает в силу факта ее создания, а «для возникновения и осуществления авторского права не требуется соблюдения каких-либо формальностей». Специфической чертой авторского права является его строго территориальный характер.

24Криптографические методы защиты информации- это специальные методы шифрования, кодирования или иного преобразования информации, в результате которого ее содержание становится недоступным без предъявления ключа криптограммы и обратного преобразования.

Современная криптография включает в себя четыре крупных раздела:

· Симметричные криптосистемы. В симметричных криптосистемах и для шифрования, и для дешифрования используется один и тот же ключ. (Шифрование - преобразовательный процесс: исходный текст, который носит также название открытого текста, заменяется шифрованным текстом, дешифрование - обратный шифрованию процесс. На основе ключа шифрованный текст преобразуется в исходный);

· Криптосистемы с открытым ключом. В системах с открытым ключом используются два ключа - открытый и закрытый, которые математически связаны друг с другом. Информация шифруется с помощью открытого ключа, который доступен всем желающим, а расшифровывается с помощью закрытого ключа, известного только получателю сообщения.( Ключ - информация, необходимая для беспрепятственного шифрования и дешифрования текстов.);

· Электронная подпись. Системой электронной подписи. называется присоединяемое к тексту его криптографическое преобразование, которое позволяет при получении текста другим пользователем проверить авторство и подлинность сообщения.

Управление ключами. Это процесс системы обработки информации, содержанием которых является составление и распределение ключей между пользователями.
Электронная цифровая подпись (ЭЦП) — реквизит электронного документа, получаемый благодаря криптографической трансформации информации с использованием особого ключа. Прилагается к документу, чтобы установить аутентичность: ЭЦП является доказательством факта подписания и подтверждает, что подпись поставил именно владелец сертификата ключа подписи.

Применение ЭЦП:
Электронный документооборот, Электронная отчетность для контролирующих органов, электронные торги, документооборот с физическими лицами.
Стеганография - это метод организации связи, который собственно скрывает само наличие связи. В отличие от криптографии, где неприятель точно может определить является ли передаваемое сообщение зашифрованным текстом, методы стеганографии позволяют встраивать секретные сообщения в безобидные послания так, чтобы невозможно было заподозрить существование встроенного тайного послания. В качестве данных может использоваться любая информация: текст, сообщение, изображение и т. п.

По аналогии с криптографией, по типу стегоключа стегосистемы можно подразделить на два типа:

с секретным ключом;

с открытым ключом.

В стегосистеме с секретным ключом используется один ключ, который должен быть определен либо до начала обмена секретными сообщениями, либо передан по защищенному каналу.

В стегосистеме с открытым ключом для встраивания и извлечения сообщения используются разные ключи, которые различаются таким образом, что с помощью вычислений невозможно вывести один ключ из другого. Поэтому один ключ (открытый) может передаваться свободно по незащищенному каналу связи.

25Модель - это такой материальный или мысленно представляемый, то есть информационный объект, который в процессе исследования замещает объект-оригинал, обладая его существенными информационными свойствами (качественно-логическими и количественно-математическими), то есть характером отношений между элементами изучаемого объекта и его отношений к другим объектам физической реальности, так, что изучение модели дает новые знания об объекте-оригинале

Существует ряд общих требований к моделям:

1. Адекватность – достаточно точное отображение свойств объекта;

2. Полнота – предоставление получателю всей необходимой информации об объекте;

3. Гибкость – возможность воспроизведения различных ситуаций во всем диапазоне изменения условий и параметров;

4. Трудоемкость разработки должна быть приемлемой для имеющегося времени и программных средств.

Моделирование - процесс построения, изучения и применения моделей. Оно тесно связано с такими категориями, как абстракция, аналогия, гипотеза и др. Процесс моделирования обязательно включает и построение абстракций, и умозаключения по аналогии, и конструирование научных гипотез. Главная особенность моделирования в том, что это метод опосредованного познания с помощью объектов-заместителей.

Математическая модель — приближенное описание объекта моделирования, выраженное с помощью математической символики.

Основные этапы моделирования.

1. Постановка задачи.Определение цели анализа и пути ее достижения и выработки общего подхода к исследуемой проблеме. На этом этапе требуется глубокое понимание существа поставленной задачи. Иногда, правильно поставить задачу не менее сложно чем ее решить. Постановка - процесс не формальный, общих правил нет.

2. Изучение теоретических основ и сбор информации об объекте оригинала.На этом этапе подбирается или разрабатывается подходящая теория. Определяются входные и выходные данные, принимаются упрощающие предположения.

3. Формализация. Заключается в выборе системы условных обозначений и с их помощью записывать отношения между составляющими объекта в виде математических выражений. Устанавливается класс задач, к которым может быть отнесена полученная математическая модель объекта,

4. Выбор метода решения. На этом этапе устанавливаются окончательные параметры моделей с учетом условия функционирования объекта. Для полученной математической задачи выбирается какой- либо метод решения или разрабатывается специальный метод. При выборе метода учитываются знания пользователя, его предпочтения, а также предпочтения разработчика.

5. Реализация модели. Разработав алгоритм, пишется программа, которая отлаживается, тестируется и получается решение нужной задачи.

6. Анализ полученной информации. Сопоставляется полученное и предполагаемое решение, проводится контроль погрешности моделирования.

7. Проверка адекватности реальному объекту.Результаты, полученные по модели сопоставляются либо с имеющейся об объекте информацией или проводится эксперимент и его результаты сопоставляются с расчётными.

Методы решения ОДУ

В классическом анализе разработано немало приемов нахождения решений дифференциальных уравнений через элементарные функции. Между тем при решении практических задач эти методы оказываются, как правило, либо совсем бесполезными, либо их решение связано с недопустимыми затратами усилий и времени. Для решения прикладных задач созданы методы приближенного решения дифференциальных уравнений, которые условно можно подразделить на три основные группы:

1. Аналитические методы, применение которых даст решение ОДУ в виде аналитической функции (метод Пикара);

2. Графические методы, дающие приближенное решение в виде графика (метод Эйлера);

3. Численные методы, когда искомая функция получается в виде таблицы (метод Рунге-Кутта).

Классификация

Ур с разделяющимися переменными

Однородные

Приводимые к однородным

В полных дифференциалах

Линейные

Ур Бернулли

Ур Риккати

Задачи

систематизировать полученный статистический материал;

2) на основании полученных экспериментальных данных оценить интересующие нас числовые характеристики наблюдаемой случайной величины;

3) определить число опытов, достаточное для получения достоверных результатов при минимальных ошибках измерения.

Одной из задач третьего типа является задача проверки правдоподобия гипотез.

Понятие компьютерных сетей и сетевых технологий. Классификация компьютерных сетей.

Сетевая технология – это согласованный набор стандартных протоколов и реализующих их программно-аппаратных средств, достаточный для построения локальной вычислительной сети. Сетевые технологии называют базовыми технологиями или сетевыми архитектурами локальных сетей.

Сетевая технология или архитектура определяет топологию и метод доступа к среде передачи данных, кабельную систему или среду передачи данных, формат сетевых кадров тип кодирования сигналов, скорость передачи в локальной сети. В современных локальных вычислительных сетях широкое распространение получили такие технологии или сетевые архитектуры, как: Ethernet, Token Ring, FDDI и Х.25.

Компьютерная сеть (Computer NetWork) – это совокупность компьютеров и других устройств, соединенных линиями связи и обменивающихся информацией между собой в соответствии с определенными правилами – протоколом (протокол играет очень важную роль, поскольку недостаточно только соединить компьютеры линиями связи, нужно еще добиться того, чтобы они "понимали" друг друга).

Основная цель сети – обеспечить пользователей потенциальную возможность совместного использования ресурсов сети. Ресурсами сети называют информацию, программы и аппаратные средства.

Современные сети можно классифицировать по различным признакам:

По расположению абонентских систем:

· Локальные LAN (Local Area Network) - сеть в пределах предприятия, учреждения, одной организации. Компьютеры расположены на расстоянии до нескольких километров и обычно соединены при помощи скоростных линий связи.

· Региональные MAN (Metropolitan Area Network) - объединяют пользователей области, города, небольших стран. В качестве каналов связи используются телефонные линии. Расстояние между узлами сети составляет от 10 до 1000 км.

· Глобальные WAN (Wide Area Network) - включают другие глобальные сети, локальные сети, а также отдельно подключаемые к ней компьютеры.

По топологии сети:

· звездообразная;

· кольцевая;

· иерархическая;

· многоузловая;

· общей шиной.

По структуре построения сети:

· одноузловые и многоузловые;

· одноканальные и многоканальные.

По скорости передачи:

· Низкоскоростные сети - до 10 Мбит/с;

· Среднескоростные сети- до 100 Мбит/с;

· Высокоскоростные сети - свыше 100 Мбит/с.

11 Беспроводная сеть подключает компьютеры, не используя сетевые кабели. Компьютеры используют радиосигналы для обмена данными между собой. Можно связаться непосредственно с другими компьютерами беспроводной сети или соединиться с существующей сетью через точку доступа.

беспроводные сетевые технологии можно поделить на три основных типа: мобильная связь, беспроводная связь между зданиями и связь внутри них.

В беспроводной сети существует три основных элемента

Имя сети.Каждая беспроводная сеть использует уникальное сетевое имя для идентификации сети Профили. В ходе конфигурации компьютера для получения доступа к беспроводной сети, создает профиль для выбранных вами параметров работы в беспроводной сети. Защита.

GSM — глобальный стандарт цифровой мобильной сотовой связи, с разделением каналов по времени (TDMA) и частоте (FDMA. GSM относится к сетям второго поколения (2 Generation) (1G — аналоговая сотовая связь, 2G — цифроваясотовая связь, 3G — широкополосная цифровая сотовая связь, коммутируемая многоцелевымикомпьютерными сетями, в том числе Интернет). Сотовые телефоны выпускаются для 4 диапазонов частот: 850 МГц, 900 МГц, 1800 МГц, 1900 МГц.

сеть GSM состоит из базовых станций, центров коммуникаций и собственно абонентов – подвижных мобильных станций или просто говоря сотовых телефонов.

Абонент передает данные через одну из базовых станции, которая в свою очередь ретранслируют данные через сеть базовых станций к другому абоненту, при этом при переходе абонента из одной ячейки в другую работа с новой базовой станцией обеспечивается без разрыва связи.
Центры коммуникаций обеспечивают взаимодействие между абонентами, устанавливая соединения, и обеспечивают взаимодействие между другими системами радиосвязи.

Wi-Fi называют классификацию устройств создающих широкополосный доступ для формирования беспроводных локальных сетей. у пользователей появляются возможности для свободного передвижение от одной точки доступа в зоне действия Wi-Fi к другой, при этом разрывы связи происходить не будут. Сети Wi-Fi необходимы минимум одна точка доступа и один клиент. Скорость передачи данных пакетов – 1 Мбит/с, Последние версии операционных систем содержат функцию, называемую zero configuration, которая показывает пользователю все доступные сети и позволяет переключаться между ними «на лету». Ее основными особенностями являются простота принципов построения и настроек мобильного абонента под беспроводную сеть. Wi-Fi-технология позволяет строить беспроводные самоорганизующиеся сети инфраструктурного типа, т.е. создавать многоточечную топологию с беспроводной точкой доступа для подключения мобильных абонентов

Bluetooth спецификация радиосвязи малого радиуса действия (обычно до 200 метров) Основное преимущества Bluetooth – это малые габариты передатчика и как следствие малое энергопотребление. наибольшее развитие Bluetooth получил в сфере мобильной коммуникации. На данный момент есть две версии технологии Bluetooth – это 1.1 и 1.2. Главными отличиями новой спецификации являются более высокая помехоустойчивость, повысившаяся скорость установления соединения и его надежность. Продукты на базе стандарта Bluetooth 1.2 полностью совместимы с другими устройствами, использующими предыдущую версиюBluetooth.

Наши рекомендации