Растворение анализируемого образца

По растворимости все неорганические вещества делят на 4 группы: а) растворимые в воде; б) растворимые в кислотах; в) растворимые в щелочах; г) нерастворимые или малорастворимые в кислотах и щелочах.

В воде растворимы почти все соединения щелочных металлов, все нитраты, перхлораты, ацетаты, хлориды (кроме PbCI2, AgCI, Hg2CI2), сульфаты (кроме сульфатов Pb, Ba, Ca, Sr, Hg(I), Ag). Многие соединения висмута, сурьмы и олова растворяются в воде, но, вступая с ней в протолитическое взаимодействие, образуют аморфные осадки гидроксидов или основных солей. Последние переходят в раствор при действии 2 М HCI или HNO3.

Хлороводородная кислота растворяет большинство оксидов, все карбонаты и гидроксиды, за исключением соединений Pb(II), Ag(I) и Hg(I). Разбавленная HCI растворяет сульфиды кадмия, алюминия, хрома, железа, марганца, цинка, ванадия, церия, бериллия, титана, циркония, тория, урана. Концентрированная HCI при нагревании растворяет все сульфиды, кроме сульфидов ртути и мышьяка.

При обработке некоторых окислителей концентрированной HCI выделяется CI2, а цвет окислителя часто меняется (фиолетовый перманганат обесцвечивается, так как MnO4-восстанавливается до Mn2+; желтая окраска хроматов или оранжевая дихроматов переходит в зеленую, так как ионы CrO42- или Cr2O72- восстанавливаются до Cr3+).

Если исследуемое вещество содержит силикаты, разлагаемые кислотами, то при его обработке горячей разбавленной HCI может выпасть осадок H2SiO3.

Если неизвестное вещество растворимо в 2 М HCI, то оно не содержит Ag(I), Hg(I) и большого количества Pb(II).

Азотная кислота растворяет все оксиды, гидроксиды, сульфиды (кроме HgS) и все нерастворимые в воде соли слабых кислот, за исключением солей сурьмы и олова. При обработке исследуемого образца HNO3 могут образоваться новые нерастворимые вещества, которые в нем первоначально отсутствовали: сера из сульфидов, PbSO4 из PbS, H2[Sn(OН)6] и H[Sb(OH)6] из солей сурьмы и олова.

Щелочи растворяют оксиды, гидроксиды и другие нерастворимые в воде соединения амфотерных металлов: цинка, алюминия, свинца, хрома, мышьяка, сурьмы и олова. Иногда различные щелочи действуют неодинаково. Например, соединения сурьмы растворяются лучше в KOH, а алюминия – в NaOH.

Вещества, которые не растворяются в кислотах и в растворах щелочей, называют нерастворимыми или малорастворимыми. К ним относятся: а) большинство силикатов; б) многие породы, минералы; в) некоторые сульфаты: PbSO4, ВаSO4, SrSO4 и СаSO4; г) ряд солей серебра: AgCI, AgBr, AgI, Ag3[Fe(CN)6], Ag4[Fe(CN)6], AgCN; д) прокаленные и безводные соли: CrCI3, Cr2(SO4)3, FeCrO4 (хромит или хромистый железняк); е) природные и прокаленные оксиды: AI2O3 (корунд), Fe2O3, Cr2O3, SnO2; ж) CaF2 и другие фториды двух- и трехвалентных металлов. Их переводят в другие соединения, которые затем растворяют с применением обычных растворителей (воды, кислот, щелочей), либо используют реакции комплексообразования.

Соли свинца PbCI2 и PbSO4 растворяют в горячем растворе CH3COONH4. Нерастворимые соединения хрома переводят в карбонаты кипячением с раствором Na2CO3. Фторид кальция и другие нерастворимые фториды разлагают обработкой тонко измельченного образца (в платиновом тигле) концентрированной H2SO4 при нагревании под тягой до прекращения выделения SO3. Остаток (CaSO4) переводят затем в карбонат кипячением с раствором Na2CO3. Нерастворимые в кислотах ферроцианиды разлагают кипячением с Na2CO3 или NaOH.

Если трудно подобрать такой растворитель, который полностью растворяет данный образец, или желают избежать длительной и трудоемкой процедуры сплавления, то обычно пользуются методом отдельных вытяжек, т.е. проводят последовательную обработку анализируемого объекта водой, 2 М CH3COOH, 2 М HCl, концентрированной НNO3.

Анализируемая смесь может полностью или частично растворяться в воде. Надежными признаками частичного растворения являются появление окрашивания и изменение рН водного раствора по сравнению с чистой водой. Поэтому обращают внимание на окраску полученного раствора и определяют его рН с помощью индикаторной бумаги.

Правильное приготовление вытяжек – залог успешной работы. Поэтому внимательно наблюдают за изменениями при использовании каждого из указанных реагентов. К новому реагенту переходят только тогда, когда окончательно убедятся, что в предыдущем образец не растворяется или растворение какой-то составной части закончилось.

Каждую из вытяжек исследуют отдельно, за исключением полученных при действии 2 М и концентрированной HCI, которые объединяют.

Катионы и анионы в водной вытяжке обнаруживают в соответствии с общей схемой кислотно-основной классификации.

В уксуснокислой и объединенной хлороводородной вытяжках катионы обнаруживают по общей схеме. Из анионов в уксуснокислой вытяжке имеет смысл обнаруживать только карбонат- и фосфат-ионы, а в хлороводородной – сульфид-, фосфат- и хромат-ионы, если она окрашена.

Азотнокислую вытяжку используют для обнаружения катионов. Из анионов обнаруживают только сульфат-ионы, образующиеся в результате окисления сульфидов.

Общая схема анализа раствора исследуемого вещества или отдельных его вытяжек включает дробное обнаружение катионов (анионов) характерными реакциями, обнаружение отдельных групп катионов (анионов), разделение на группы по кислотно-основной схеме с помощью групповых реагентов, систематический анализ оставшихся катионов (анионов) и проверка ионов, обнаруженных ранее дробным методом.

Испытание на катионы I группы. К 3–4 каплям исследуемого раствора прибавляют 2–3 капли раствора Na2CO3. Если осадок выпадает, его отделяют, а катионы I группы обнаруживают в центрифугате. Если осадок не выпадает, то в растворе могут присутствовать только катионы I группы, которые открывают в отдельной пробе исследуемого раствора.

Испытание на катионы II группы. Если при действии на испытуемый раствор Na2CO3 выпал осадок, то берут новую пробу этого раствора (10–12 капель) и прибавляют 2–3 капли 2 М HCI. Если осадок не выпадает, то катионы II группы отсутствуют. В случае появления осадка добавляют HCI до полного осаждения. Осадок отделяют центрифугированием, промывают водой и обнаруживают в нем катионы II группы систематическим методом.

Испытание на катионы III группы. К 2–3 каплям раствора после отделения катионов II группы прибавляют столько же 2 М H2SO4 и нагревают. Выпадение осадка указывает на присутствие катионов III группы. Их обнаруживают систематическим методом после переведения сульфатов в раствор.

Испытание на катионы IV группы. К 2–3 каплям исследуемого раствора (если при действии HCI и H2SO4 осадков не образуется) или центрифугата после отделения катионов II, III групп добавляют по каплям раствор NaOH до щелочной реакции (рН 9–10). Образование осадка свидетельствует о возможном присутствии катионов IV, V и VI групп. Полное растворение первоначально выпавшего осадка при действии на него небольшого избытка NaOH (рН 10–12) свидетельствует о присутствии только катионов IV группы. Нерастворимый в избытке NaOH осадок может состоять из гидроксидов катионов V и VI групп. Его отделяют от раствора центрифугированием, а в центрифугате открывают катионы IV группы после разрушения их гидроксокомплексов.

Испытание на катионы VI группы. Если при действии на раствор, полученный после отделения катионов IV группы, избытком 25%-ного раствора NH4OH первоначально выпавший осадок растворяется, то это признак присутствия только катионов VI группы. Нерастворимый в избытке NH4OH осадок может состоять из гидроксидов катионов V группы. Его отделяют от раствора центрифугированием. В центрифугате открывают катионы VI группы после разрушения аммиачных комплексов.

Испытание на катионы V группы. Если при действии избытками растворов NaOH и NH4ОН осадок не растворяется, это свидетельствует о наличии катионов V группы.

Если исследуемый раствор содержит одно растворенное вещество, то, установив группу, к которой принадлежит катион, открывают его характерными реакциями. Если исследуемое вещество состоит из нескольких компонентов, катионы которых принадлежат к одной аналитической группе, то их открывают, сочетая дробный и систематический методы анализа. Если же в исследуемом веществе обнаружено присутствие катионов нескольких групп, его анализируют систематическим методом, как смесь катионов шести групп.

Установление присутствия тех или иных катионов в исследуемом растворе значительно облегчает обнаружение анионов. Пользуясь таблицей растворимости, можно заранее предсказать наличие или отсутствие в исследуемом растворе отдельных анионов. Например, если в нейтральном водном растворе обнаружен катион бария, то этот раствор не может содержать анионы SO42-, СO32-, SO32-.

После предварительных испытаний на присутствие анионов летучих кислот, окислителей и восстановителей приступают к установлению групп, к которым принадлежат анионы.

Испытание на анионы I группы. К 2–3 каплям нейтрального или слабощелочного раствора добавляют 2 капли раствора BaCI2. Если осадок выпадает, то присутствуют анионы I группы.

Испытание на анионы II группы. К 2–3 каплям анализируемого раствора, подкисленного 2 каплями 2 М раствора HNO3, добавляют каплю раствора AgNO3. Выпадение осадка указывает на присутствие анионов второй группы.

Испытание на анионы III группы. Так как анионы III группы не имеют группового реагента, их открывают характерными реакциями из раствора, полученного после осаждения анионов I и II групп действием Ag2SO4 при рН 8.

Определив группы, к которым принадлежат присутствующие в растворе анионы, приступают к их обнаружению систематическим методом.

Наши рекомендации