Эллинистическая Греция в годы детства 7 страница

Если на какую-либо точку треугольника, подпертого в трех вершинах, положен груз, то для распределения нагрузки на три опоры Герон, следуя, разумеется, за Архимедом, предлагает (гл. 39) следующее правильное решение которое мы даем в нынешних символах. Точка, в которой лежит груз, соединяется с одной из вершин треугольника, и соединяющая прямая продолжается до пересечения с противоположной стороны треугольника. Пусть нагрузка равна Р и пусть точка ее приложения делит проведенную прямую в отношении m : п (считая от вершины), тогда на вершину этой прямой придется нагрузка nP/(m+n), на основание mP/(m+n). Пусть теперь проведенная нами прямая разделит основание треугольника в отношении k : l. Тогда на один из его концов придется нагрузка lmP/((m+n)(k+l)), на другой kmP/((m+n)(k+l)).

Здесь мы находим у Архимеда несомненное предвосхищение нынешней механики. В самом деле, эта теорема {95} очевидно дает однозначный результат при проведении прямой к любой из трех вершин. Проделав эту процедуру в общем виде для трех вершин, приравняв полученные выражения и сократив, получим теорему Чевы.

Резюмируя сказанное, мы прежде всего должны указать на то, что живой интерес к механике, засвидетельствованный уже для эпохи пребывания Архимеда в Александрии, заставляет нас считать неверным утверждение Плутарха, выставлявшего Архимеда, в духе симпатичной Плутарху идеалистической философии, поклонником чистой отвлеченной математики, относившимся к механике с высокомерным пренебрежением как к прикладной, сугубо практической дисциплине и занимавшимся ею лишь для развлечения в часы досуга. Наоборот, Архимед делает все возможное для того, чтобы максимально сблизить «чистую» математику с механикой: с одной стороны, он перестраивает всю теоретическую механику по образцу евклидовой геометрии с ее постулатами и логически вытекающими из них теоремами; с другой, он пытается решать чисто геометрические задачи при помощи принципов рычага и учения о центрах тяжести.

Дело в том, что, как мы убедимся ниже, в области математики все внимание Архимеда было устремлено как раз на те отделы ее, где необходимо было интегрирование, запрещенное идеалистической философией; он меньше всего готов был довольствоваться подыскиванием строгих доказательств для положений, уже выставленных в V и IV вв. Одним из главных путей, найденных им для продвижения в этой области, и было математическое обоснование закона рычага и применение его для геометрических доказательств.

Мы видели уже, что по существу обе эти попытки были неудачными. Постулаты, положенные в основание теоретической механики, принадлежали как раз к числу тех «недостаточно очевидных предпосылок», с которыми Архимед, как мы увидим, боролся в области чистой математики; то положение, которое Архимед доказывал — что нагрузки рычага обратно пропорциональны длине его плеч, по существу говоря, немногим менее очевидно, чем тот постулат, который он при этом принимал без доказательства,— что два тела, имеющие равный вес, будучи {96} подвешены за центр тяжести, могут заменять друг друга на рычаге без нарушения равновесия.

Но если бы даже это обоснование теоретической механики и оказалось математически безукоризненным, идея применения принципов механики для решения чисто геометрических проблем не могла оправдать себя: приемы, почерпнутые из механики, потому только приводили к новым выводам в геометрии, что в них допускалось и применялось примитивное интегрирование атомистической математики, запрещенное в чистой геометрии. Стоило только допустить применение этих приемов в геометрии, и не трудно открыть целый ряд новых истин в учении о площадях и объемах, не прибегая к рычагам и центрам тяжести. Правда, Архимед с его техническим складом мышления отличался гениальной виртуозностью именно в применении этих методов, основанных на механике, но, ввиду наличия в них инфинитезимальных элементов, он в этом виде не мог применять их для математических доказательств, а только в евристических целях, для нахождения новых решений, которые затем должны были доказыватъся строгим методом исчерпания.

Обогащенный этим многообразным научным опытом, с новыми раскрывшимися перед ним математическими горизонтами, Архимед вернулся в родные Сиракузы. {97}

Глава пятая

²

Архимед в Сиракузах

Архимед вернулся в родной город крупным ученым с мировым именем. В Сиракузах ему как родственнику монарха было обеспечено блестящее общественное положение, достаток и досуг, дававший возможность полностью посвятить себя научным занятиям; вдобавок в Сиракузах не было той специфической придворной обстановки, которая, как мы видели, накладывала свою отвратительную печать на работу поэтов и ученых. Спокойной научной работе благоприятствовала и внешняя обстановка; благодаря искусной внешней политике Гиерона, Сиракузы наслаждались миром во время первой Пунической войны (264—241) и пользовались всеми выгодами нейтрального, невоюющего государства; такое же спокойное и выгодное положение занимали они и в промежутке между первой и второй Пуническими войнами.

В это время в кругах математиков (во всяком случае, среди крупнейших математиков Музея) существовал интересный обычай, впоследствии, в XVII—XVIII вв., снова вошедший в моду. Когда кому-либо из математиков удавалось открыть и доказать новую математическую ис-{98}тину, то он, прежде чем опубликовать доказательство этой истины, сообщал свой вывод без доказательства крупнейшим математикам Музея. Только по отношению к молодым, еще не имеющим имени математикам считалось допустимым сразу сообщать им доказательство, не дав им возможности самим испытать свои силы в новом вопросе. Конечно, наибольшая честь принадлежала тому, кто первый предложил и доказал новую истину; поэтому, если математик предложил для доказательства теорему, а затем оказывалось, что сам он доказательства ее не нашел, то это было большим конфузом для предложившего.

Так, например, Архимед имел обыкновение открытые им новые истины до их опубликования посылать для доказательства Конону, крупнейшему из современных ему математиков. Об этом мы узнаем из написанного после смерти Конона письма Архимеда к Досифею, молодому талантливому ученику Конона. Письмо это было написано значительно позже и представляет собою предисловие к сочинению «О спиралях».

«Архимед желает здравствовать Досифею. Бóльшая часть теорем, которые я послал Конону и доказательство которых ты меня просишь прислать в каждом письме, доказана уже в моих работах, которые доставил тебе Гераклид. Еще несколько доказательств содержатся в книге, которую я тебе теперь шлю. Не удивляйся тому, что я чересчур долго задерживал опубликование этих доказательств. Причина этого в том, что я хотел сперва сообщить об этих теоремах людям, занимающимся математикой, которые хотели бы сначала сами попробовать доказать их. Ведь очень многие геометрические теоремы, которые на первый взгляд кажутся чрезвычайно трудными, в конце концов, находят успешное окончательное решение. Но Конон умер прежде, чем ему удалось урвать время для того, чтобы заняться этими теоремами. Если бы этого не случилось, он нашел бы решение всех этих проблем, ясно доказал бы их, и, кроме того, обогатил бы геометрию и собственными открытиями. Ведь я хорошо знаю, что он обладал необыкновенными математическими дарованиями и к тому же исключительной ученостью. И вот протекло много лет со смерти Конона, а я ничего не слышал о том чтобы кто-нибудь взялся за решение одной из этих задач. {99} Поэтому я перечислю здесь по порядку все теоремы, предложенные мною Конону, а особенно две из них, которые привели меня к неправильному выводу: пусть это будет устрашающим примером того, как люди, утверждающие, будто они умеют доказать все то, что они предлагают решить другим, но не прилагающие собственных решений этих вопросов, в конце концов, принуждены убедиться, что они брались доказать то, что доказать невозможно».

Далее Архимед дает перечень тех теорем, которые он послал для решения Конону (разумеется, без доказательства). Это — часть тех теорем, которые впоследствии вошли в сочинения «О шаре и цилиндре», «О коноидах и сфероидах» (обе теоремы о параболоиде), «О спиралях». Для нашей цели интересно только следующее замечание Архимеда: «Следующая теорема была неверной, именно вот что: если шар будет рассечен плоскостью, перпендикулярной к одному из диаметров его, на две неравные части, то отношение большего сегмента к меньшему равно квадрату отношения большей поверхности к меньшей.... Не верна также и последняя предложенная мною для доказательства теорема, что если диаметр шара разделен в таком отношении, что квадрат большей части в три раза больше, чем квадрат меньшей части, и если через точку деления провести плоскость, перпендикулярную к диаметру, и рассечь ею шар, то тело, подобное большему из этих шаровых сегментов, будет наибольшим из всех сегментов, имеющих одинаковую с ним поверхность. Действительно, как мы увидим из II книги сочинения «О шаре и цилиндре», Архимед впоследствии сам обнаружил неправильность и того и другого вывода и дал правильные решения и для объема шарового сегмента и для условия, при котором он имеет максимальную величину. Надо при этом отметить, что, как видно из его замечаний, ни один из математиков, которым он предложил для доказательства свои теоремы, этих ошибок не обнаружил. Тем не менее, Архимед счел необходимым публично, в работе, предназначенной для широкого распространения, заявить о своих ошибках, прибавив к этому еще такой нелестный выпад по своему адресу: «Пусть это будет устрашающим примером того, как люди, утверждающие, будто они умеют доказать все то, что они предлагают решить другим, но {100} не прилагающие собственных решений этих вопросов, в конце концов принуждены убедиться в том, что они брались за невозможное». Это — образец редкой научной честности и объективности Архимеда! Что касается комплиментов по адресу Конона, то нам уже трудно судить, было ли утверждение Архимеда: «Если бы Конон был жив, то он нашел бы решения всех этих проблем и ясно доказал бы их», объективной оценкой этого выдающегося предшественника или простой галантностью, принятой в научных кругах того времени.

О том же обычае сообщать содержание теорем без доказательств крупнейшим математикам до опубликования этих доказательств свидетельствует и начало письма к Эратосфену «О методе доказательства теорем при помощи механики». Мы узнаем отсюда, что все заключенные в этом сочинении теоремы были сначала посланы Эратосфену «как серьезному ученому, выдающемуся по значению философу, не затрудняющемуся и в вопросах математики, если приходится иметь с ними дело»; очевидно, Эратосфен этих решений не нашел: «Архимед желает Эратосфену здравствовать. Раньше я послал тебе некоторые из найденных мною теорем, причем я сообщил тебе только выводы с предложением самому найти доказательства, которых я тебе пока не сообщал».

Из всего этого материала совершенно ясно, что Архимед был в это время общепризнанной величиной, членом математического Олимпа, бывшим на равной ноге с Кононом и Эратосфеном, возглавлявшими математическую науку; с Кононом он был к тому же в личной дружбе. С Досифеем, любимым и талантливым учеником Конона (как мы сказали бы, — занявшим его кафедру), Архимед переписывается после смерти Конона, но как корифей науки с младшим коллегой (он не предлагает ему для доказательства свои открытия, а сразу сообщает свои доказательства).

Однако, будучи вполне респектабельным академическим математиком, он решается (правда, весьма осторожно) ввести в науку приемы, заимствованные им из механики, не боясь бросить вызов тому, что считалось хорошим тоном в математических кругах.

Как я говорил уже, данное Архимедом математическое {101} обоснование его механики не может нас удовлетворить. Можно думать, что либо и ему самому оно не казалось вполне безукоризненным, либо он сомневался в том, что это нововведение может сразу же убедить его коллег. Поэтому он в самом раннем из своих геометрических сочинений, в сочинении «О квадратуре параболы», не довольствуется «механическим» доказательством теоремы о площади параболического сегмента, а дает еще параллельное строгое геометрическое доказательство. В более поздних же сочинениях, исключая лишь письмо к Эратосфену, «механические» доказательства больше вовсе не встречаются, хотя из этого письма мы узнаем, что свои решения Архимед и в более позднее время находил при помощи механики. Очевидно, он пришел к выводу, что механический метод является недостаточно строгим, и поэтому при окончательной обработке своих трудов устранил все его следы.

Во всяком случае, этот метод включал в себя прием, который был категорически запрещен в математике со времени Евдокса: это — интегрирование, применявшееся атомистами, составление тел из «плоскостей» (т. е. из тел, имеющих бесконечно малую толщину), а плоскостей из «линий» (т. е. из плоскостей, имеющих бесконечно малую ширину). В своем личном обиходе Архимед, как мы говорили, применял этот метод, заимствованный им из использованных им трудов по механике; но в первом же труде, в котором он открыто выступает со своим «механическим» методом, он заботливо и тщательно устраняет все следы этой интеграции, вводя вместо нее доказательства евдоксовым методом исчерпания с применением reductio ad absurdum.

Однако, если мы сравним доказательства этого типа в «Началах» Евклида и у Архимеда, то убедимся, что и на этих доказательствах лежит печать гениальности сиракузца: эти доказательства в его руках получили гораздо более наглядный и убедительный характер. В обычном своем виде доказательство исчерпанием состоит в том, что неизвестно откуда берется готовое решение и затем его правильность устанавливается чисто догматически; доказывают, что оно не может быть ни больше ни меньше этой готовой величины. Усваивая такую казуистическую аргументацию, молодой математик не мог на основании {102} такого решения уяснить себе даже то, что речь идет о переменной величине, все более и более приближающейся к пределу; поэтому метод исчерпания не расширял его математического кругозора. Архимед, наряду со старым методом исчерпания, применяет новое видоизменение старого приема Антифонта (стр. 26); он не только вписывает в кривую, площадь сегмента которой он определяет, но и описывает вокруг нее ступенчатую прямолинейную фигуру; затем он доказывает, что площадь вписанной фигуры всегда меньше некоторой величины S (которая, как он заранее узнавал при помощи «нестрогого» атомистического метода, равна площади искомого сегмента), а площадь описанной — всегда больше той же величины S. Далее, он как бы сдвигает обе прямолинейные фигуры так, чтобы они совпали между собой и с криволинейной фигурой, площадь которой он определяет. Разумеется, он и этого прямо не делает и нигде не говорит, что эти прямолинейные фигуры в пределе стремятся к криволинейной. Он вместо этого всего доказывает, что разность между обеими прямолинейными фигурами может быть сделана меньше любой заданной величины, скажем, D. Теперь стоит предположить, что площадь криволинейной фигуры больше S на любую заданную величину D, и она, очевидно, окажется больше площади описанной прямолинейной фигуры; стоит предположить, что площадь криволинейной фигуры меньше S на D, и она, очевидно, окажется меньше площади вписанной прямолинейной фигуры, ибо вся разница между площадями этих прямолинейных фигур меньше D. А если искомая площадь не больше и не меньше S, то она, очевидно, равна S. Отметим, что Архимед не дает и этого доказательства раз навсегда, а повторяет его снова и снова для каждого отдельного случая. Но во всяком случае, как ни далек метод Архимеда от нынешней предельной процедуры, он вводил сближающиеся между собой верхнюю и нижнюю границы и таким образом, правда, бессознательно, подводил читателя к понятию предела. В этом его величайшая заслуга и значение.

Чтобы читателю стало ясно, какие задачи ставил своему исследованию сам Архимед в эту эпоху, позволю себе процитировать предисловие к его сочинениям этого времени: к «Квадратуре параболы» и к книгам «О шаре и цилиндре». {103}

«Архимед желает здравствовать Досифею. Узнав, что Конон, бывший моим другом при жизни, скончался и что и ты, как и я, был близок к нему и, кроме того, что ты — знаток геометрии, я, несмотря на всю печаль, вызванную потерей не только друга, но и замечательного математика, решил тем не менее направить тебе письмо, которое я собирался послать Конону, и сообщить тебе в нем геометрическую теорему, которой до сих пор никто не занимался и которою я занялся теперь. Я нашел ее сперва при помощи механики, а затем доказал также и геометрически. Некоторые геометры прежнего времени пытались доказать, что можно найти площадь, ограниченную прямыми линиями, которая была бы равна данному кругу или данному круговому сегменту; затем они пытались найти квадратуру площади, заключенной между сечением остроугольного конуса (т. е. обводом эллипса, см. выше, стр. 35—36) и прямой линией, причем они позволяли себе исходить из вряд ли допустимых предпосылок. Поэтому большая часть ученых пришла к выводу, что они этих задач не разрешили. Но я ничего не слышал о том, чтобы кто-либо из моих предшественников попытался найти квадратуру сегмента, ограниченного прямой линией и сечением прямоугольного конуса (т. е. обводом параболы, см. выше, стр. 35). Ныне я нашел решение этой задачи. Ибо в настоящей работе я показываю, что всякий сегмент, ограниченный прямой линией и сечением прямоугольного конуса, равен (т. е. равновелик) четырем третям треугольника, имеющего то же основание и равную высоту с ним. Для доказательства этого свойства я применил следующую предпосылку: излишек, на который большая из двух неравных площадей превосходит меньшую, будучи прибавляем к самому себе, может быть сделан бóльшим, чем любая данная ограниченная площадь. Прежние геометры пользовались этой предпосылкой и с ее помощью они доказали, что круги относятся, как квадраты, а шары, как кубы их диаметров. То, что всякая пирамида есть третья часть призмы, которая имеет то же основание, что и пирамида, и равную с ней высоту; что любой конус есть треть цилиндра, который имеет то же основание, что и конус, и равную с ним высоту, они доказали, применяя предпосылку, сходную с предыдущей. И в самом деле, каждое из дока-{104}зательств этих теорем было принято так же, как если бы они этой предпосылкой не пользовались (т. е. принятие этой очевидной предпосылки не сделало их доказательств менее убедительными в глазах ученых. — С. Л.). Я был бы удовлетворен, если бы мое публикуемое теперь сочинение подверглось той же оценке, что и указанные теоремы. Поэтому я тщательно обработал мое доказательство и шлю его тебе; я доказываю это положение сперва методом механики, а потом геометрически. Я предпосылаю своей работе несколько элементарных теорем о конических сечениях, полезных для доказательства теоремы. Будь здоров».

Таким предисловием снабжена первая его работа «О квадратуре параболы». Вскоре после этой работы он шлет тому же Досифею свое новое сочинение «О шаре и цилиндре», в предисловии к которому он замечает: «При предыдущей оказии я послал тебе мои изыскания, которые я успел закончить к тому времени, в том числе доказательство того, что площадь сегмента, ограниченного сечением прямоугольного конуса и прямой, равна четырем третям треугольника, имеющего то же основание, что и сегмент, и ту же высоту. После отсылки этого письма я нашел другие важные теоремы и разработал их доказательства. А именно: во-первых, что поверхность всякого шара в четыре раза больше площади его большого круга; во-вторых, что поверхность всякого шарового сегмента равна площади круга, радиус которого равен прямой, соединяющей вершину сегмента с одной из точек окружности круга, служащего основанием сегмента; далее, что цилиндр, основание которого равно большому кругу шара, а высота — диаметру шара, сам (т. е. по объему — С. Л.) в полтора раза больше этого шара, а его поверхность (включая площади верхнего и нижнего основания — С. Л.) в полтора раза больше поверхности шара. Разумеется, эти свойства были присущи этим телам всегда, но они остались неизвестными всем геометрам; ни один из них не заметил даже, что эти тела соизмеримы между собой. Поэтому я могу без ложного стыда поставить эти исследования в один ряд с теоремами Евдокса о телах, — с теоремами, которые считаются далеко превосходящими все остальные, — именно, что пирамида равна трети призмы, {105} имеющей такое же основание и высоту, а конус — цилиндра... Разумеется, и эти свойства были присущи телам всегда, но, тем не менее, верно то, что они оставались неизвестными всем замечательным геометрам, жившим до Евдокса, и никто из них не открыл их.

Каждый, кто понимает в этом деле, может проверить правильность моих открытий. Как хорошо было бы, если бы они были сделаны еще в то время, когда Конон был жив! Я думаю, что он лучше, чем кто бы то ни было, мог бы понять их и вынести справедливый приговор».

Эти выступления дают нам яркий образ замечательного сиракузского математика. Он получает известие о смерти своего ближайшего друга и, вероятно, учителя. Но печаль по покойном не вынуждает его ни на минуту отвлечься от работы. Наука прежде всего. С этой точки зрения для Архимеда важнее всего то, что он лишился лучшего и компетентнейшего собеседника и критика, с которым он, между прочим, решил поделиться и новым сделанным им открытием. Но он узнает, что Конон оставил знающего и способного ученика, и он немедленно направляет к нему работу, предназначенную для Конона. Архимед знает, что ему удалось сделать важные открытия, и рад этому; но он чужд всякого тщеславия. Он обрисовывает в основных чертах ход развития науки о квадратурах и кубатурах в последнее столетие и вполне объективно отмечает место, которое принадлежит его исследованиям в ряду этих замечательных открытий.

С другой стороны, из этого вступления мы видим, какие новые задачи ставит себе в области квадратур и кубатур Архимед.

Площади прямолинейных фигур, круга и его частей были найдены еще в V в.; затем эти выводы были подтверждены строгим методом исчерпания. Точно так же еще Демокритом были найдены объемы призмы, цилиндра, пирамиды и конуса, но доказательства его были даны нестрогим атомистическим методом. Строгое доказательство этих теорем методом исчерпания дал Евдокс. Отметим попутно, что, как мы видим из второго приведенного здесь предисловия, в это время Архимед еще ничего не знает о математических трудах Демокрита, а приписывает честь открытия теорем об объеме пирамиды и конуса исключи-{106}тельно Евдоксу, считая эти открытия «далеко превосходящими все остальные». Впоследствии он сам исправит эту ошибку. Это не случайность. Демокрит был запрещен; в идеалистической науке было правилом, следуя Платону, не упоминать его имени даже там, где это было нужно, а между тем почти для каждого нового открытия в области естествознания и математики приходилось непосредственно или через третьи руки обращаться к Демокриту. Особенно часто заимствуют ту или иную часть учения Демокрита платоники и пифагорейцы, и кто знает, сколько еще великих открытий Демокрита стало известно нам в искаженном виде и под чужим именем!

Предшественникам Архимеда было уже известно, что объемы шаров относятся, как кубы их радиусов, как было известно им и отношение объема шара к его поверхности, но нахождение самой этой поверхности, т. е. нахождение отношения этой поверхности к площади большого круга, было еще делом будущего.

Вот почему Архимед должен был сосредоточить свое внимание на квадратурах конических сечений, на нахождении поверхности и объема шара и, наконец, на телах, получаемых от вращения конических сечений вокруг оси. Для этой цели необходимы были пересмотр и углубление учения о конических сечениях, уже до него, как мы видели, систематически изложенного Менехмом, Аристеем и Евклидом.

Как мы знаем, для нахождения решений Архимед применял методы атомистов, но, будучи воспитан в евдоксовых принципах и выступая перед александрийскими учеными, он всячески подчеркивает строгость своего метода, который не должен, по его мнению, встретить возражений со стороны даже самых строгих ревнителей нового вполне научного метода. Он отгораживается от «вряд ли допустимых» предпосылок тех из предшественников (т. е. атомистов и их последователей), выводы которых не получили признания в науке; он имеет в виду, конечно, не Демокрита, с трудами которого он, как мы видели, еще не был знаком, а тех из платоников, которые в математике приняли метод Демокрита. Сам Архимед исходит из предпосылки, которая не встретила возражений со стороны кого-либо из математиков, именно, что «излишек», на ко-{107}торый большая из двух неравных площадей превосходит меньшую, будучи прибавляем к самому себе, может быть сделан бóльшим, чем любая данная ограниченная площадь. И в «Квадратуре параболы» и в «Шаре и цилиндре» и позже в сочинении «О спиралях» эта аксиома предпослана доказательству. В самом деле, на этом допущении, как мы видели, зиждилась знаменитая теорема, легшая в основу метода исчерпания: «Если от излишка, на который большая из двух неравных площадей превосходит меньшую, отнять больше половины, от полученного остатка снова отнять больше половины и т. д., то, в конце концов, можно получить остаток, который будет меньше, чем любая заданная ограниченная площадь».

Первым публичным выступлением Архимеда в этой области и было нахождение квадратуры параболы. Он пользуется этим случаем для того, чтобы познакомить ученую публику также и со своим новым «механическим» методом решения геометрических задач. Но, отнюдь не желая навлечь на себя обвинение в недостаточной строгости, он при публикации видоизменяет этот метод, устраняя из него атомистическое составление площадей из линий, заимствованное им из трудов по механике.

Чтобы наглядно понять, в чем состояла эта очистка «механических» приемов доказательства от «вряд ли убедительных» (атомистических) предпосылок, сравним новое, тоже «механическое» доказательство теоремы о площади параболического сегмента, содержащееся в «Квадратуре параболы», с приведенным выше (стр. 79) «механическим» доказательством, которое Архимед применял для собственных надобностей и о котором мы узналиизего письма к Эратосфену.

В первоначальном доказательстве, известном нам из этого письма, площади как треугольника, так и находящегося внутри него параболического сегмента рассматривались как состоящие из чрезвычайно большого множества плотно прилегающих друг к другу «материальных» прямых линий, параллельных оси параболы. Предпосылка, что тело состоит из таких линий, есть, как впоследствии выражается Архимед, «постулат, с которым нелегко согласиться». Поэтому в своем предназначенном для опубликования сочинении Архимед уже не делит треугольник {108} и параболу на чрезвычайно большое число линий, а рассматривает некоторое ограниченное число трапеций с равными высотами. Разделив сторону треугольника, параллельную оси параболы, на равные части и соединив полученные точки с противоположной вершиной треугольника, он получает две зубчатые ломаные линии: одну, объемлющую параболу, другую, — объемлемую параболой. Как Архимед будет дальше доказывать, ясно заранее: зная наперед (он установил это при помощи атомистического метода), что площадь параболического сегмента равна трети площади треугольника, он будет доказывать, что площадь объемлющей ломаной всегда больше трети площади всего треугольника, а площадь объемлемой всегда меньше трети ее; затем он докажет, что разность между объемлющей и объемлемой ломаными может быть сделана сколь угодно малой, и, наконец, при помощи reductio ad absurdum покажет, что площадь параболического сегмента не может быть ни больше, ни меньше трети площади треугольника, а следовательно, равна трети этой площади.

Именно так ведется доказательство в сочинении «О квадратуре параболы». Самому доказательству (предл. 14—15) предпосылаются две группы лемм. Первая группа (предл. 1—5) содержит несколько теорем о параболе, нужных для доказательства основной теоремы; из них те, которые уже были доказаны Евклидом в его «Конических сечениях» (предл. 1—3), приводятся без доказательств, а остальные доказываются весьма изящным искусственным способом при помощи преобразования пропорций. Вторая группа (предл. 6—13) представляет собою ряд очень элементарных теорем, относящихся к теории рычага, основной смысл которых сводится к принципу: чем дальше от точки опоры привесить один и тот же груз, тем больший противовес нужен, чтобы его уравновесить.

Для доказательства основной теоремы параболический сегмент подвешивается (фиг. 16) к одному из плеч равноплечего рычага так, чтобы ось параболы шла вертикально, чтобы один из концов его основания Q упирался в конец плеча, а другой q находился на одной вертикали с точкой опоры О рычага. На это же плечо подвешивается треугольник, одной из сторон которого служит уже упомянутое {109} основание параболического сегмента Qq, другой — вертикаль qE, проходящая при продолжении через О, третьей — касательная QE к параболе в точке Q. Основание Qq делим на п равных частей: qO1, O1O2, O2O3,..., OnQ и через точки деления O1,O2, O3,..., On проводим вертикальные прямые до пересечения с плечом рычага в точках H1, H2, H3,..., Hn, с параболой в точках R1, R2, R3, ..., Rn и с касательной QE к параболе в

Наши рекомендации