Проблемы генетической безопасности

Во второй половине ХХ века над биосферой нависла угроза загрязнения мутагенами. Любая популяция способна выдержать лишь определенный груз мутаций. Увеличение частоты мутаций может привести к снижению устойчивости популяций из-за нарушения генетического гомеостаза.

Необходимо дальнейшее усиление эколого-генетического мониторинга – контроля засостоянием окружающей среды на популяционно-генетическом уровне.

В качестве профилактических мер следует использовать развитие «безотходных» технологий, ограничение производства веществ с мутагенным действием, усиление всех видовконтроля за состоянием потенциально опасных предприятий: АЭС, химические и микробиологические производства, научно-промышленные установки биотехнологическогохарактера.

Существуют факторы, которые снижают частоту мутаций – антимутагены. К антимутагенам относятся некоторые витамины–антиоксиданты (например, витамин Е, ненасыщенные жирные кислоты), серосодержащие аминокислоты, а также различные биологически активные вещества, которые повышают активность репарационных систем.

Установлено, что мутагены при определенных условиях оказывают канцерогенное и тератогенное действие. Канцерогены – это факторы, провоцирующие развитие онкологических заболеваний; тератогены – это факторы, провоцирующие развитие различных аномалий, уродств. Тератогенный эффект дают многие лекарственные препараты. Например, в 1960-е гг. на Западе широко использовалось снотворное талидомид, применение которого привело к рождению большого числа детей с недоразвитыми конечностями.

Наряду с тератами – уродствами – часто встречаются морфозы – изменения, которые не ведут к утрате органом его функций. Отличить мутагенное действие от тератогенногосравнительно легко: тераты (уродства) являются ненаследственными модификациями, они предсказуемы (направлены) и не сохраняются в последующих поколениях. Например, серая окраска тела у дрозофилы – это нормальный признак. В то же время известна мутация yellow – желтое тело (эту мутацию легко получить искусственно, обрабатывая родительских особей различными мутагенами; при этом разные мутагены могут давать одинаковый фенотипический эффект). Если же личинкам дрозофилы добавлять в корм азотнокислое серебро, то все эти личинки разовьются в мух с желтым телом. Но, если от этих желтых мух получить потомство и выращивать его на обычной питательной среде, то все потомки вновь станут серыми. Таким образом, в данном случае «пожелтение» тела мух – это не мутация, а модификация, или фенокопия (модификация, по фенотипу копирующая мутацию); азотнокислое серебро в данном случае является не мутагеном, а тератогеном.



Мутации Мутации - стойкие наследуемые изменения генетического материала.
В зависимости от уровня изменения генома выделяют: Генные мутации - различные виды изменений внутренней структуры отдельных генов, включающие: Точковые мутации - замена одного нуклеотида в цепи ДНК на другой. Точковые мутации, происходящие в пределах одного кодона, делятся на три типа: - молчащие мутации, которые кодируют ту же аминокислоту; - миссенс-мутации, которые кодируют другую аминокислоту; Проблемы генетической безопасности - student2.ru
- нонсенс-мутации, которые приводят к остановке синтеза белка. Инсерции - вставка одного или более дополнительных нуклеотидов в молекулу ДНК. Инсерции в кодирующих регионах гена могут вызывать нарушение сплайсинга РНК или смещение рамки считывания, что в любом случае приводит к значительным повреждениям продукта гена. Делеции - утрата одного или нескольких нуклеотидов из молекулы ДНК. Подобно инсерциям, они приводят к сдвигу рамки считывания. Хромосомные мутации - различные виды изменений структуры хромосом:
делеция - утрата части хромосомного материала
Проблемы генетической безопасности - student2.ru  
дупликация - удвоение участка хромосомы
Проблемы генетической безопасности - student2.ru  
инверсия - изменения чередования генов в хромосоме за счет поворота участка хромосомы на 180°
Проблемы генетической безопасности - student2.ru  
транслокация - обмен участками негомологичных хромосом
Проблемы генетической безопасности - student2.ru  
Геномные мутации - изменения числа хромосом, включающие: - полиплоидии - изменение числа хромосом, равное гаплоидному, - анеуплоидии - изменение числа хромосом, не равное гаплоидному. Чаще всего у человека наблюдаются трисомии (увеличение количества хромосом на одну) и моносомии (отсутствие одной хромосомы).
Виды мутаций, причины, примеры
     
   
         

Мутации – это изменения в ДНК клетки. Возникают под действием ультрафиолета, радиации (рентгеновских лучей) и т.п. Передаются по наследству, служат материалом для естественного отбора. отличия от модификаций

Генные мутации – изменение строения одного гена. Это изменение в последовательности нуклеотидов: выпадение, вставка, замена и т.п. Например, замена А на Т. Причины – нарушения при удвоении (репликации) ДНК. Примеры: серповидноклеточная анемия, фенилкетонурия.

Хромосомные мутации – изменение строения хромосом: выпадение участка, удвоение участка, поворот участка на 180 градусов, перенос участка на другую (негомологичную) хромосому и т.п. Причины – нарушения при кроссинговере. Пример: синдром кошачьего крика.

Геномные мутации – изменение количества хромосом. Причины – нарушения при расхождении хромосом.

· Полиплоидия – кратные изменения (в несколько раз, например, 12 → 24). У животных не встречается, у растений приводит к увеличению размера.

· Анеуплоидия – изменения на одну-две хромосомы. Например, одна лишняя двадцать первая хромосома приводит к синдрому Дауна (при этом общее количество хромосом – 47).

Цитоплазматические мутации – изменения в ДНК митохондрий и пластид. Передаются только по женской линии, т.к. митохондрии и пластиды из сперматозоидов в зиготу не попадают. Пример у растений – пестролистность.

Соматические – мутации в соматических клетках (клетках тела; могут быть четырех вышеназванных видов). При половом размножении по наследству не передаются. Передаются при вегетативном размножении у растений, при почковании и фрагментации у кишечнополостных (у гидры).

Мутация

[править | править исходный текст]

Материал из Википедии — свободной энциклопедии

У этого термина существуют и другие значения, см. Мутация (значения).

Проблемы генетической безопасности - student2.ru

Проблемы генетической безопасности - student2.ru

Главный мутаген табачного дыма —бензпирен — связанный с одним из нуклеотидовмолекулы ДНК.

Мута́ция (лат. mutatio — изменение) — стойкое (то есть такое, которое может быть унаследовано потомками данной клеткиили организма) преобразование генотипа, происходящее под влиянием внешней или внутренней среды. Термин предложенХуго де Фризом. Процесс возникновения мутаций получил название мутагенеза.

Содержание

[убрать]

· 1 Причины мутаций

o 1.1 Связь мутаций с репликацией ДНК

o 1.2 Связь мутаций с рекомбинацией ДНК

o 1.3 Связь мутаций с репарацией ДНК

· 2 Модели мутагенеза

o 2.1 Полимеразная модель мутагенеза

o 2.2 Таутомерная модель мутагенеза

o 2.3 Другие модели мутагенеза

· 3 Классификации мутаций

· 4 Последствия мутаций для клетки и организма

· 5 Роль мутаций в эволюции

· 6 Проблема случайности мутаций

· 7 См. также

· 8 Примечания

· 9 Литература

Причины мутаций[править | править исходный текст]

Мутации делятся на спонтанные и индуцированные. Спонтанные мутации возникают самопроизвольно на протяжении всей жизни организма в нормальных для него условиях окружающей среды с частотой около Проблемы генетической безопасности - student2.ruПроблемы генетической безопасности - student2.ru на нуклеотид за клеточную генерацию.

Индуцированными мутациями называют наследуемые изменения генома, возникающие в результате тех или иных мутагенных воздействий в искусственных (экспериментальных) условиях или при неблагоприятных воздействиях окружающей среды.

Мутации появляются постоянно в ходе процессов, происходящих в живой клетке. Основные процессы, приводящие к возникновению мутаций — репликация ДНК, нарушения репарации ДНК, транскрипции[1][2] игенетическая рекомбинация.

Связь мутаций с репликацией ДНК[править | править исходный текст]

Многие спонтанные химические изменения нуклеотидов приводят к мутациям, которые возникают прирепликации. Например, из-за дезаминирования цитозина напротив него в цепь ДНК может включаться урацил(образуется пара У-Г вместо канонической пары Ц-Г). При репликации ДНК напротив урацила в новую цепь включается аденин, образуется пара У-А, а при следующей репликации она заменяется на пару Т-А, то есть происходит транзиция (точечная замена пиримидина на другой пиримидин или пурина на другой пурин).

Связь мутаций с рекомбинацией ДНК[править | править исходный текст]

Из процессов, связанных с рекомбинацией, наиболее часто приводит к мутациям неравный кроссинговер. Он происходит обычно в тех случаях, когда в хромосоме имеется несколько дуплицированных копий исходного гена, сохранивших похожую последовательность нуклеотидов. В результате неравного кроссинговера в одной из рекомбинантных хромосом происходит дупликация, а в другой — делеция.

Связь мутаций с репарацией ДНК[править | править исходный текст]

Спонтанные повреждения ДНК встречаются довольно часто, такие события имеют место в каждой клетке. Для устранения последствий подобных повреждений имеется специальные репарационные механизмы (например, ошибочный участок ДНК вырезается и на этом месте восстанавливается исходный). Мутации возникают лишь тогда, когда репарационный механизм по каким-то причинам не работает или не справляется с устранением повреждений. Мутации, возникающие в генах, кодирующих белки, ответственные за репарацию, могут приводить к многократному повышению (мутаторный эффект) или понижению (антимутаторный эффект) частоты мутирования других генов. Так, мутации генов многих ферментов системы эксцизионной репарации приводят к резкому повышению частоты соматических мутаций у человека, а это, в свою очередь, приводит к развитию пигментной ксеродермы и злокачественных опухолей покровов. Мутации могут появляться не только при репликации, но и при репарации — эксцизионной репарации или при пострепликативной.

Модели мутагенеза[править | править исходный текст]

В настоящее время существует несколько подходов для объяснения природы и механизмов образования мутаций. Общепринятой, в настоящее время, является полимеразная модель мутагенеза. Она основана на идее о том, единственной причиной образования мутаций являются случайные ошибки ДНК-полимераз. В предложенной Уотсоном и Криком таутомерной модели мутагенеза, впервые была высказана идея о том, что в основе мутагенеза лежит способность оснований ДНК находиться в различных таутомерных формах. Процесс образования мутаций рассматривается как чисто физико-химическое явление. Полимеразно — таутомерная модель ультрафиолетового мутагенеза опирается на идею о том, что при образовании цис-син циклобутановыхпиримидиновых димеров может изменяться таутомерное состояние входящих в них оснований. Изучается склонный к ошибкам и SOS-синтез ДНК, содержащей цис-син циклобутановые пиримидиновые димеры[3]. Существуют и другие модели.

Полимеразная модель мутагенеза[править | править исходный текст]

В полимеразной модели мутагенеза считается, что единственной причиной образования мутаций являются спорадические ошибки ДНК-полимераз. Впервые полимеразная модель ультрафиолетового мутагенеза была предложена Бреслером[4]. Он предположил, что мутации появляются в результате того, что ДНК-полимеразы напротив фотодимеров иногда встраивают некомплементарные нуклеотиды. В настоящее время такая точка зрения является общепринятой[5]. Известно правило (A rule), согласно которому напротив поврежденных участков ДНК-полимераза чаще всего встраивает аденины. Полимеразная модель мутагенеза объясняет природу мишенных мутаций замены оснований[6].

Таутомерная модель мутагенеза[править | править исходный текст]

Уотсон и Крик предположили, что в основе спонтанного мутагенеза лежит способность оснований ДНК переходить при некоторых условиях в неканонические таутомерные формы, влияющие на характер спаривания оснований. Эта гипотеза привлекала к себе внимание и активно развивалась. Обнаружены редкие таутомерные формы цитозина в кристаллах оснований нуклеиновых кислот, облученных ультрафиолетовым светом. Результаты многочисленных экспериментальных и теоретических исследований однозначно говорят о том, что основания ДНК могут переходить из канонических таутомерных форм в редкие таутомерные состояния. Было выполнено много работ посвященных исследованиям редких таутомерных форм оснований ДНК. С помощью квантовомеханических расчетов и метода Монте-Карло было показано, что таутомерное равновесие вцитозин — содержащих димерах и в гидрате цитозина сдвинуто по направлению к их имино формам как в газовой фазе, так и в водном растворе. На этой основе объясняется ультрафиолетовый мутагенез.[7] В паре гуанин — цитозин устойчивым будет только одно редкое таутомерное состояние, в котором атомы водородов первых двух водородных связей, отвечающих за спаривание оснований, одновременно изменяют свои положения.[8] А поскольку при этом изменяются положения атомов водорода, участвующих в Уотсон-Криковском спаривании оснований, то следствием может быть образование мутаций замены оснований, транзиций от цитозина к тимину или образование гомологичных трансверсий от цитозина к гуанину. Участие редких таутомерных форм в мутагенезе обсуждалось неоднократно.

Другие модели мутагенеза[править | править исходный текст]

В работах Полтева с соавторами предложен и обоснован молекулярный механизм узнавания полимеразами комплементарных пар оснований нуклеиновых кислот. На основании этой модели были изучены некоторые закономерности спонтанного и индуцированного аналогами оснований мутагенеза. Объяснено образование мутаций замены оснований в предположении, что главной причиной мутагенеза является образование неканонических пар оснований, типа Хугстиновских пар.[9].

Предполагается, что одной из причин образования мутаций замены основания является дезаминирование 5-метилцитозина[10], что может вызывать транзиции от цитозина к тимину. Из-за дезаминирования цитозина напротив него в цепь ДНК может включаться урацил (образуется пара У-Г вместо канонической пары Ц-Г). При репликации ДНК напротив урацила в новую цепь включается аденин, образуется пара У-А, а при следующей репликации она заменяется на пару Т-А, то есть происходит транзиция (точечная замена пиримидина на другой пиримидин или пурина на другой пурин).

Классификации мутаций[править | править исходный текст]

Существует несколько классификаций мутаций по различным критериям. Мёллер предложил делить мутации по характеру изменения функционирования гена на гипоморфные (измененные аллели действуют в том же направлении, что и аллели дикого типа; синтезируется лишь меньше белкового продукта), аморфные (мутация выглядит, как полная потеря функции гена, например, мутация white у Drosophila), антиморфные (мутантный признак изменяется, например, окраска зерна кукурузы меняется с пурпурной на бурую) и неоморфные.

В современной учебной литературе используется и более формальная классификация, основанная на характере изменения структуры отдельных генов, хромосом и генома в целом. В рамках этой классификации различают следующие виды мутаций:

· геномные;

· хромосомные;

· генные.

Геномные: — полиплоидизация (образование организмов или клеток, геном которых представлен более чем двумя (3n, 4n, 6n и т. д.) наборами хромосом) и анеуплоидия (гетероплоидия) — изменение числа хромосом, не кратное гаплоидному набору (см. Инге-Вечтомов, 1989). В зависимости от происхождения хромосомных наборов среди полиплоидов различают аллополиплоидов, у которых имеются наборы хромосом, полученные при гибридизации от разных видов, и аутополиплоидов, у которых происходит увеличение числа наборов хромосом собственного генома, кратное n.

При хромосомных мутациях происходят крупные перестройки структуры отдельных хромосом. В этом случае наблюдаются потеря (делеция) или удвоение части (дупликация) генетического материала одной или нескольких хромосом, изменение ориентации сегментов хромосом в отдельных хромосомах (инверсия), а также перенос части генетического материала с одной хромосомы на другую (транслокация) (крайний случай — объединение целых хромосом, т. н. Робертсоновская транслокация, которая является переходным вариантом от хромосомной мутации к геномной).

На генном уровне изменения первичной структуры ДНК генов под действием мутаций менее значительны, чем при хромосомных мутациях, однако генные мутации встречаются более часто. В результате генных мутаций происходят замены, делеции и вставки одного или нескольких нуклеотидов, транслокации, дупликации и инверсии различных частей гена. В том случае, когда под действием мутации изменяется лишь один нуклеотид, говорят о точечных мутациях.

Точечная мутация, или единственная замена оснований, — тип мутации в ДНК или РНК, для которой характерна замена одного азотистого основания другим. Термин также применяется и в отношении парных замен нуклеотидов. Термин точечная мутация включает так же инсерции и делеции одного или нескольких нуклеотидов. Выделяют несколько типов точечных мутаций.

· Точечные мутации замены оснований. Поскольку в состав ДНК входят азотистые основания только двух типов — пурины и пиримидины, все точечные мутации с заменой оснований разделяют на два класса: транзиции и трансверсии[11][12]. Транзиция — это мутация замены оснований, когда одно пуриновое основание замещается на другое пуриновое основание (аденин на гуанин или наоборот), либо пиримидиновое основание на другое пиримидиновое основание (тимин на цитозин или наоборот. Трансверсия — это мутация замены оснований, когда одно пуриновое основание замещается на пиримидиновое основание или наоборот). Транзиции происходят чаще, чем трансверсии.

· Точечные мутации сдвига рамки чтения. Они делятся на делеции и инсерции[13][14]. Делеции — это мутация сдвига рамки чтения, когда в молекуле ДНК выпадает один или несколько нуклеотидов. Инсерция — это мутация сдвига рамки чтения, когда в молекулу ДНК встраивается один или несколько нуклеотидов.

Встречаются также сложные мутации. Это такие изменения ДНК, когда один её участок заменяется участком другой длины и другого нуклеотидного состава[15].

Точечные мутации могут появляться напротив таких повреждений молекулы ДНК, которые способны останавливать синтез ДНК. Например, напротив циклобутановых пиримидиновых димеров. Такие мутации называются мишенными мутациями (от слова «мишень»)[5]. Циклобутановые пиримидиновые димеры вызывают как мишенные мутации замены оснований [6 9], так и мишенные мутации сдвига рамки[16].

Иногда точечные мутации образуются на, так называемых, неповрежденных участках ДНК, часто в небольшой окрестности от фотодимеров. Такие мутации называются немишенными мутациями замены оснований или немишенными мутациями сдвига рамки[17].

Точечные мутации образуются не всегда сразу же после воздействия мутагена. Иногда они появляются после десятков циклов репликаций. Это явление носит название задерживающихся мутаций[18]. При нестабильности генома, главной причине образования злокачественных опухолей, резко возрастает количество немишенных и задерживающихся мутаций[19].

Возможны четыре генетических последствия точковых мутаций: 1) сохранение смысла кодона из-за вырожденности генетического кода (синонимическая замена нуклеотида), 2) изменение смысла кодона, приводящее к замене аминокислоты в соответствующем месте полипептидной цепи (миссенс-мутация), 3) образование бессмысленного кодона с преждевременной терминацией (нонсенс-мутация). В генетическом коде имеются три бессмысленных кодона: амбер — UAG, охр — UAA и опал — UGA (в соответствии с этим получают название и мутации, приводящие к образованию бессмысленных триплетов — например амбер-мутация), 4) обратная замена (стоп-кодона на смысловой кодон).

По влиянию на экспрессию генов мутации разделяют на две категории: мутации типа замен пар основанийи типа сдвига рамки считывания (frameshift). Последние представляют собой делеции или вставки нуклеотидов, число которых не кратно трём, что связано с триплетностью генетического кода.

Первичную мутацию иногда называют прямой мутацией, а мутацию, восстанавливающую исходную структуру гена, — обратной мутацией, или реверсией. Возврат к исходному фенотипу у мутантного организма вследствие восстановления функции мутантного гена нередко происходит не за счет истинной реверсии, а вследствие мутации в другой части того же самого гена или даже другого неаллельного гена. В этом случае возвратную мутацию называют супрессорной. Генетические механизмы, благодаря которым происходит супрессия мутантного фенотипа, весьма разнообразны.

Почковые мутации (спорты) — стойкие соматические мутации происходящие в клетках точек роста растений. Приводят к клоновой изменчивости[20]. При вегетативном размножении сохраняются. Многие сорта культурных растений являются почковыми мутациями[21].

Последствия мутаций для клетки и организма[править | править исходный текст]

Мутации, которые ухудшают деятельность клетки в многоклеточном организме, часто приводят к уничтожению клетки (в частности, к программируемой смерти клетки, — апоптозу). Если внутри- и внеклеточные защитные механизмы не распознали мутацию и клетка прошла деление, то мутантный ген передастся всем потомкам клетки и, чаще всего, приводит к тому, что все эти клетки начинают функционировать иначе.

Мутация в соматической клетке сложного многоклеточного организма может привести к злокачественным или доброкачественным новообразованиям, мутация в половой клетке — к изменению свойств всего организма-потомка.

В стабильных (неизменных или слабо изменяющихся) условиях существования большинство особей имеют близкий к оптимальному генотип, а мутации вызывают нарушение функций организма, снижают его приспособленность и могут привести к смерти особи. Однако в очень редких случаях мутация может привести к появлению у организма новых полезных признаков, и тогда последствия мутации оказываются положительными; в этом случае они являются средством адаптации организма к окружающей среде и, соответственно, называются адаптационными.

Роль мутаций в эволюции[править | править исходный текст]

При существенном изменении условий существования те мутации, которые раньше были вредными, могут оказаться полезными. Таким образом, мутации являются материалом для естественного отбора. Так, мутанты-меланисты (темноокрашенные особи) в популяциях березовой пяденицы в Англии впервые были обнаружены учеными среди типичных светлых особей в середине XIX века. Темная окраска возникает в результате мутации одного гена. Бабочки проводят день на стволах и ветвях деревьев, обычно покрытых лишайниками, на фоне которых светлая окраска является маскирующей. В результате промышленной революции, сопровождающейся загрязнением атмосферы, лишайники погибли, а светлые стволы берез покрылись копотью. В результате к середине XX века (за 50-100 поколений) в промышленных районах темная морфа почти полностью вытеснила светлую. Было показано, что главная причина преимущественного выживания чёрной формы — хищничество птиц, которые избирательно выедали светлых бабочек в загрязненных районах.

Если мутация затрагивает «молчащие» участки ДНК, либо приводит к замене одного элемента генетического кода на синонимичный, то она обычно никак не проявляется в фенотипе (проявление такой синонимичной замены может быть связано с разной частотой употребления кодонов). Однако методами генного анализа такие мутации можно обнаружить. Поскольку чаще всего мутации происходят в результате естественных причин, то в предположении, что основные свойства внешней среды не менялись, получается, что частота мутаций должна быть примерно постоянной. Этот факт можно использовать для исследования филогении — изучения происхождения и родственных связей различных таксонов, в том числе и человека. Таким образом, мутации в молчащих генах служат для исследователей «молекулярными часами». Теория «молекулярных часов» исходит также из того, что большинство мутаций нейтральны, и скорость их накопления в данном гене не зависит или слабо зависит от действия естественного отбора и потому остается постоянной в течение длительного времени. Для разных генов эта скорость, тем не менее, будет различаться.

Исследование мутаций в митохондриальной ДНК (наследуется по материнской линии) и в Y-хромосомах (наследуется по отцовской линии) широко используется в эволюционной биологии для изучения происхождениярас и народностей, реконструкции биологического развития человечества.

Проблема случайности мутаций[править | править исходный текст]

В 40-е годы среди микробиологов была популярна точка зрения, согласно которой мутации вызываются воздействием фактора среды (например, антибиотика), к которому они позволяют адаптироваться. Для проверки этой гипотезы был разработан флуктуационный тест и метод реплик.

Флуктуационный тест Лурии-Дельбрюка заключается в том, что небольшие порции исходной культуры бактерий рассеивают в пробирки с жидкой средой, а после нескольких циклов делений добавляют в пробирки антибиотик. Затем (без последующих делений) на чашке Петри с твердой средой высевают выживших устойчивых к антибиотику бактерий. Тест показал, что число устойчивых колоний из разных пробирок очень изменчиво — в большинстве случаев оно небольшое (или нулевое), а в некоторых случаях очень высокое. Это означает, что мутации, вызвавшие устойчивость к антибиотику, возникали в случайные моменты времени как до, так и после его воздействия.

Метод реплик заключается в том, что с исходной чашки Петри, где на твердой среде растут колонии бактерий, делается отпечаток на ворсистую ткань, а затем с ткани бактерии переносятся на несколько других чашек, где рисунок их расположения оказывается тем же, что на исходной чашке. После воздействия антибиотиком на всех чашках выживают колонии, расположенные в одних и тех же точках. Высевая такие колонии на новые чашки, можно показать, что все бактерии внутри колонии обладают устойчивостью.

Таким образом, обоими методами было доказано, что «адаптивные» мутации возникают независимо от воздействия того фактора, к которому они позволяют приспособиться, и в этом смысле мутации случайны. Однако несомненно, что возможность тех или иных мутаций зависит от генотипа и канализована предшествующим ходом эволюции (см. Закон гомологических рядов в наследственной изменчивости).

Кроме того, закономерно различается частота мутирования разных генов и разных участков внутри одного гена. Также известно, что высшие организмы используют «целенаправленные» (то есть происходящие в определенных участках ДНК) мутации в механизмах иммунитета. С их помощью создаётся разнообразие клоновлимфоцитов, среди которых в результате всегда находятся клетки, способные дать иммунный ответ на новую, неизвестную для организма болезнь. Подходящие лимфоциты подвергаются положительной селекции, в результате возникает иммунологическая память. (В работах Юрия Чайковского говорится и о других видах направленных мутаций.)

См. также[править | править исходный текст]

· Мутагены

· Хромосомные аберрации

· Молекулярная радиобиология

· Радиационная генетика

· Мутагенез

جهش

از ویکی‌پدیا، دانشنامهٔ آزاد

بخشی از مجموعه مقاله‌های
زیست‌شناسی فرگشتی
Проблемы генетической безопасности - student2.ru
مفاهیم کلیدی
فرگشت (مقدمه)•نیای مشترک• شواهد نیای مشترک
تاریخ اندیشه
مرور•نظریه لامارک•نظریه داروین• نئوداروینیسم•تکامل پرشی• تلفیق فیشری• تلفیق تکاملی جدید
تاریخ طبیعی
تاریخ حیات•تنوع زیستی• جغرافیای زیستی
ساز‌و‌کارها و پیامدها
انتخاب طبیعی• انتخاب جنسی• سازش• رانش ژن شارش ژن• جهش• هم‌فرگشتی• گونه‌زایی
برداشت‌های اجتماعی و فرهنگی
میزان حمایت مخالفان•جدال• پیامدهای اجتماعی• نظریه و حقیقت
شاخه‌ها و کاربردها
شاخه‌بندی• ژن‌شناسی بوم‌شناختی• انسان‌شناسی فرگشتی• تکوین فرگشتی• روانشناسی تکاملی• تکامل ملکولی• فیلوژنتیک• ژنتیک جمعیت• سیستماتیک
درگاه.ویکی‌پروژه ن • ب • و

جهش یا موتاسیون یک تغییرِ ژنتیکیِ است که صفاتِ زیستی بعضی از افرادِ یک گونه را تغییرمی‌دهد. به عبارتِ دقیق تر، جهش‌ها تغییراتی در توالیِ DNA هستند. جهش‌ها می‌توانند در هر ناحیه‌ای از DNA رخ دهند.[۱]

در هر یک از فعالیتهای سلولی نظیر فرایندهای همانندسازی، رونویسی، ترجمه، ترکیب مجدد یا نوترکیبی کروموزومها و بروز و ظهور اطلاعات ژنتیکی احتمال خطا و اشتباه وجود دارد.

در مواردِ نادر ممکن است تغییرِ خود بخودی در قسمتی از DNA رخ دهد. این تغییر که جهش نامیده می‌شود، ممکن است تغییر در رمز ایجاد نموده و به تولیدِ یک پروتئین ناقص منجر شود. گاهی نتیجهٔ خالص به صورت ِ تغییری در ظاهرِ فرد و یا تغییری در یک شاخص قابلِ اندازه گیریِ موجود زنده، بنامِ ویژگی یا صفت مشاهده می‌گردد. طی فرایند جهش، یک ژن ممکن است به دو یا چند شکلِ متفاوت به نامِ آلل تغییر یابد.[۲]

محتویات

[نهفتن]

· ۱ انواع جهش

· ۲ جهش‌های زیان آور و سودمند

· ۳ علت وقوع جهش

· ۴ بیماری‌های ژنتیکی

· ۵ نظریه ی دووریس

· ۶ چگونگی بروز جهش

· ۷ شواهد تغییر

· ۸ پانویس

· ۹ منابع

انواع جهش[ویرایش]

می‌توان جهش‌ها را بسته به این که چه تاثیری بر فنوتیپ موجود زنده وارد می‌کنند، به سه دسته تقسیم نمود[۱]:

1. جهش‌های مضر (detrimental): به جهش‌هایی گفته می‌شود که شایستگیِ فرد را کاهش می‌دهند. جهش‌های مضر غالباًاز جمعیت حذف می‌شوند زیرا انتخاب طبیعیعلیهِ افرادِ واجدِ این گونه جهش‌ها عمل می‌کند.

Наши рекомендации