Активные фазированные антенные решетки. Общие сведения

Активная фазированная антенная решётка (АФАР) — фазированная антенная решётка, в которой направление излучения и (или) форма диаграммы направленности регулируются изменением амплитудно-фазового распределения токов или полей возбуждения на активных излучающих элементах[1].

Активная фазированная антенная решётка конструктивно состоит из модулей, которые объединяют излучающий элемент (или группу излучающих элементов) и активные устройства (усилительные, генераторные или преобразовательные). Эти устройства могут в простейшем случае усиливать передаваемый или принимаемый излучающим элементом сигнал, а также осуществлять преобразование частоты сигнала, генерировать (формировать) сигнал, преобразовывать сигнал из аналоговой в цифровую форму и (или) из цифровой в аналоговую. Для совместной согласованной работы все модули АФАР должны быть объединены цепью распределения сигнала возбудителя (в режиме приёма — цепью сбора сигнала в приёмное устройство), или работа модулей должна быть синхронизирована от единого источника.

В отличие от АФАР, пассивная ФАР не содержит активных устройств. Например, в передающей системе, оснащенной пассивной ФАР, радиосигнал генерируется и усиливается до требуемой мощности в едином для всей системы радиопередатчике, после чего распределяется (а мощность радиосигнала делится) между излучающими элементами. Напротив, в передающей АФАР нет единого выходного мощного усилителя: менее мощные усилители размещены в каждом её модуле.

Сравнение с пассивной решёткой[править | править вики-текст]

В обычной пассивной решётке один передатчик мощностью несколько киловатт питает несколько сотен элементов, каждый из которых излучает только десятки ватт мощности. Современный микроволновый транзисторный усилитель может, однако, также произвести десятки ватт, и в радаре с активной фазированной решёткой несколько сотен модулей, каждый мощностью в десятки ватт, создают в целом мощный главный луч радара в несколько киловатт.

В то время как результат идентичен, активные решётки намного более надёжны, поскольку хотя отказ одного приёмо-передающего элемента решётки и искажает диаграмму направленности антенны, что несколько ухудшает характеристики локатора, в целом он остаётся работоспособным. Катастрофического отказа лампы передатчика, которая является проблемой обычных радаров, просто не может произойти. Дополнительная выгода — экономия веса без большой лампы высокой мощности, связанной с ней системой охлаждения и большого блока питания высокого напряжения.

Другой особенностью, которая может использоваться только в активных решётках, является способность управлять усилением индивидуальных приёмно-передающих модулей. Если это может быть сделано, диапазон углов, через которые луч может быть отклонен, существенно увеличивается, и таким образом многие из ограничений геометрии решёток, которые имеют обычные фазированные решётки могут быть обойдены. Такие решётки называют решётками суперувеличения. Из изданной литературы неясно, используют ли какая-либо существующая или проектируемая антенная решётка эту технику.

Недостатки[править | править вики-текст]

Технология АФАР имеет две ключевые проблемы:

Рассеивание мощности[править | править вики-текст]

Первая проблема — рассеивание мощности. Из-за недостатков микроволновых транзисторных усилителей (монолитная микроволновая интегральная схема, MMIC (англ.)русск.), эффективность передатчика модуля — типично меньше чем 45%. В результате, AФAР выделяет большое количество теплоты, которая должна быть рассеяна, чтобы предохранить чипы передатчика от расплавления — надёжность GaAs MMIC-чипов улучшается при низкой рабочей температуре. Традиционное охлаждение воздухом, используемое в обычных ЭВМ и авионике, плохо подходит при высокой плотности упаковки элементов AФAР, в результате чего современные AФAР охлаждаются жидкостью (американские проекты используют polyalphaolefin (PAO) хладагент, подобный синтетической гидравлической жидкости). Типичная жидкостная система охлаждения использует насосы, вводящие хладагент через каналы в антенне, и выводящие затем его к теплообменнику — им может быть как воздушный охладитель (радиатор) так и теплообменник в топливном баке — со второй жидкостью, охлаждающей петлю теплообмена, чтобы уменьшить нагрев содержимого топливного бака.

По сравнению с обычным радаром истребителя с воздушным охлаждением, радар с AФAР более надёжен, однако потребляет больше электроэнергии и требует более интенсивного охлаждения. Но AФAР может обеспечить намного большую передаваемую мощность, что необходимо для большей дальности обнаружения цели (увеличение передающей мощности однако имеет недостаток — увеличения следа, по которому радиоразведка противника или RWR могут обнаружить радар).

Стоимость

Другая проблема — стоимость массового производства модулей. Для радара истребителя, требующего типично от 1000 до 1800 модулей, стоимость AФAР становится неприемлемой, если модули стоят больше чем сто долларов каждый. Ранние модули стоили приблизительно 2 тыс. долл., что не допускало массового использования AФAР. Однако стоимость таких модулей и MMIC-чипов постоянно уменьшается, поскольку себестоимость их разработки и производства постоянно снижается.

Несмотря на недостатки, активные фазированные решётки превосходят обычные радарные антенны почти во всех отношениях, обеспечивая более высокую следящую способность и надёжность, пусть и при некотором увеличении в сложности и, возможно, стоимости.

Наши рекомендации