Метод подведения под знак дифференциала для простейших дробей

Переходим к рассмотрению следующего типа дробей:

Метод подведения под знак дифференциала для простейших дробей - student2.ru , Метод подведения под знак дифференциала для простейших дробей - student2.ru , Метод подведения под знак дифференциала для простейших дробей - student2.ru , Метод подведения под знак дифференциала для простейших дробей - student2.ru (коэффициенты a и c не равны нулю).

На самом деле пара случаев с арксинусом и арктангенсом уже проскальзывала на уроке Метод замены переменной в неопределенном интеграле. Решаются такие примеры способом подведения функции под знак дифференциала и дальнейшим интегрированием с помощью таблицы. Вот еще типовые примеры с длинным и высоким логарифмом:

Пример 5

Метод подведения под знак дифференциала для простейших дробей - student2.ru

Пример 6

Метод подведения под знак дифференциала для простейших дробей - student2.ru

Тут целесообразно взять в руки таблицу интегралов и проследить, по каким формулам и какосуществляется превращение. Обратите внимание, как и зачемвыделяются квадраты в данных примерах. В частности, в Примере 6 сначала необходимо представить знаменатель (2x2-5) в виде Метод подведения под знак дифференциала для простейших дробей - student2.ru , а потом подвести Метод подведения под знак дифференциала для простейших дробей - student2.ru под знак дифференциала. А сделать это всё нужно для того, чтобы воспользоваться стандартной табличной формулой Метод подведения под знак дифференциала для простейших дробей - student2.ru .

Попробуйте самостоятельно решить примеры №№ 7 и 8, тем более, что они достаточно короткие.

Пример 7

Найти неопределенный интеграл:

Метод подведения под знак дифференциала для простейших дробей - student2.ru .

Пример 8

Найти неопределенный интеграл:

Метод подведения под знак дифференциала для простейших дробей - student2.ru .

Если Вам удастся выполнить еще и проверку данных примеров, то Ваши навыки дифференцирования на высоте.

Метод выделения полного квадрата

Интегралы вида

Метод подведения под знак дифференциала для простейших дробей - student2.ru , Метод подведения под знак дифференциала для простейших дробей - student2.ru

(коэффициенты a и b не равны нулю) решаются методом выделения полного квадрата.

На самом деле такие интегралы сводятся к одному из четырех табличных интегралов, которые мы только что рассмотрели. А достигается это с помощью знакомых формул сокращенного умножения:

Метод подведения под знак дифференциала для простейших дробей - student2.ru или Метод подведения под знак дифференциала для простейших дробей - student2.ru .

Формулы применяются именно в таком направлении, то есть идея метода состоит в том, чтобы в знаменателе искусственно организовать выражения Метод подведения под знак дифференциала для простейших дробей - student2.ru либо Метод подведения под знак дифференциала для простейших дробей - student2.ru , а затем преобразовать их, соответственно, в Метод подведения под знак дифференциала для простейших дробей - student2.ru либо Метод подведения под знак дифференциала для простейших дробей - student2.ru .

Пример 9

Найти неопределенный интеграл

Метод подведения под знак дифференциала для простейших дробей - student2.ru .

Это простейший пример, в котором при слагаемомx2– единичный коэффициент(а не какое-нибудь число или минус).

Смотрим на знаменатель, здесь всё дело явно сведется к случаю Метод подведения под знак дифференциала для простейших дробей - student2.ru . Начинаем преобразование знаменателя:

Метод подведения под знак дифференциала для простейших дробей - student2.ru .

Очевидно, что нужно прибавлять 4. И, чтобы выражение не изменилось – эту же четверку и вычитать:

Метод подведения под знак дифференциала для простейших дробей - student2.ru

Теперь можно применить формулу Метод подведения под знак дифференциала для простейших дробей - student2.ru :

Метод подведения под знак дифференциала для простейших дробей - student2.ru

После того, как преобразование закончено ВСЕГДАжелательно выполнить обратный ход: Метод подведения под знак дифференциала для простейших дробей - student2.ru , всё нормально, ошибок нет.

Чистовое оформление рассматриваемого примера должно выглядеть примерно так:

Метод подведения под знак дифференциала для простейших дробей - student2.ru

Пример 10

Найти неопределенный интеграл

Метод подведения под знак дифференциала для простейших дробей - student2.ru .

Это пример для самостоятельного решения, ответ в конце урока

Пример 11

Найти неопределенный интеграл

Метод подведения под знак дифференциала для простейших дробей - student2.ru .

Что делать, когда перед x2 находится минус? В этом случае нужно вынести минус за скобки и расположить слагаемые в нужном нам порядке: Метод подведения под знак дифференциала для простейших дробей - student2.ru . Константу(«двойку» в данном случае) не трогаем!

Теперь в скобках прибавляем единичку. Анализируя выражение, приходим к выводу, что и за скобкой нужно единичку прибавить:

Метод подведения под знак дифференциала для простейших дробей - student2.ru

Тут получилась формула Метод подведения под знак дифференциала для простейших дробей - student2.ru , применяем:

Метод подведения под знак дифференциала для простейших дробей - student2.ru

ВСЕГДА выполняем на черновике проверку:

Метод подведения под знак дифференциала для простейших дробей - student2.ru

что и требовалось проверить.

Чистовое оформление примера выглядит примерно так:

Метод подведения под знак дифференциала для простейших дробей - student2.ru

Усложняем задачу.

Пример 12

Найти неопределенный интеграл:

Метод подведения под знак дифференциала для простейших дробей - student2.ru

Здесь при слагаемом x2 уже не единичный коэффициент, а «пятёрка».

Метод подведения под знак дифференциала для простейших дробей - student2.ru

(1) Если при x2 находится константа, то её сразу выносим за скобки.

(2) И вообще эту константу всегда лучше вынести за пределы интеграла, чтобы она не мешалась под ногами.

(3) Очевидно, что всё сводится к формуле Метод подведения под знак дифференциала для простейших дробей - student2.ru .

Надо разобраться в слагаемом 2ab, а точнее, найти величину b получить «двойку».

(4) Как видим, здесь b = (2/5). Значит, к выражению прибавляем (2/5)2 = (4/25), и эту же дробь вычитаем.

(5) Теперь выделяем полный квадрат. В общем случае также надо вычислить (7/5)-(4/25), но здесь у нас вырисовывается формула длинного логарифма

Метод подведения под знак дифференциала для простейших дробей - student2.ru ,

и действие (7/5)-(4/25) выполнять не имеет смысла, почему – станет ясно чуть ниже.

(6) Собственно, можно применить формулу Метод подведения под знак дифференциала для простейших дробей - student2.ru ,

только вместо «икс» у нас x+(2/5), что не отменяет справедливость табличного интеграла. Строго говоря, пропущен один шаг – перед интегрированием функцию x+(2/5) следовало подвести под знак дифференциала:

Метод подведения под знак дифференциала для простейших дробей - student2.ru ,

но, как уже неоднократно отмечалось, этим часто пренебрегают.

(7) В ответе под корнем желательно раскрыть все скобки обратно:

Метод подведения под знак дифференциала для простейших дробей - student2.ru

Пример 13

Найти неопределенный интеграл

Метод подведения под знак дифференциала для простейших дробей - student2.ru .

Это пример для самостоятельного решения. Ответ в конце урока.

Существуют интегралы с корнями в знаменателе, которые с помощью замены сводятся к интегралам рассмотренного типа, о них можно прочитать в статье Сложные интегралы, но она рассчитана на весьма подготовленных студентов.

Наши рекомендации