Прямая на плоскости и в пространстве.
Лекция № 3 (2 часа)
Тема: «Прямая и плоскость. Кривые второго порядка. Поверхности второго порядка»
1.3.1. Вопросы лекции:
Прямая на плоскости и в пространстве.
Плоскость в трехмерном пространстве.
Краткое содержание вопросов
Прямая на плоскости и в пространстве.
Как известно, любая точка на плоскости определяется двумя координатами в какой- либо системе координат. Системы координат могут быть различными в зависимости от выбора базиса и начала координат.
Определение. Уравнением линииназывается соотношение y = f(x) между координатами точек, составляющих эту линию.
Отметим, что уравнение линии может быть выражено параметрическим способом, то есть каждая координата каждой точки выражается через некоторый независимый параметр t.
Характерный пример – траектория движущейся точки. В этом случае роль параметра играет время.
Определение. Любая прямая на плоскости может быть задана уравнением первого порядка
Ах + Ву + С = 0,
причем постоянные А, В не равны нулю одновременно, т.е. А2 + В2 ¹ 0. Это уравнение первого порядка называют общим уравнением прямой.
В зависимости от значений постоянных А,В и С возможны следующие частные случаи:
- C = 0, А ¹ 0, В ¹ 0 – прямая проходит через начало координат
- А = 0, В ¹ 0, С ¹ 0 { By + C = 0}- прямая параллельна оси Ох
- В = 0, А ¹ 0, С ¹ 0 { Ax + C = 0} – прямая параллельна оси Оу
- В = С = 0, А ¹ 0 – прямая совпадает с осью Оу
- А = С = 0, В ¹ 0 – прямая совпадает с осью Ох
Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных начальных условий.
Определение. В декартовой прямоугольной системе координат вектор с компонентами (А, В) перпендикулярен прямой , заданной уравнением Ах + Ву + С = 0.
Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:
и обозначить , то полученное уравнение называется уравнением прямой с угловым коэффициентом k.
Определение. Каждый ненулевой вектор (a1, a2), компоненты которого удовлетворяют условию Аa1 + Вa2 = 0 называется направляющим вектором прямой
Ах + Ву + С = 0.
Если в общем уравнении прямой Ах + Ву + С = 0 С ¹ 0, то, разделив на –С, получим: или , где
Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения прямой с осью Ох, а b – координатой точки пересечения прямой с осью Оу.
Определение. Если заданы две прямые y = k1x + b1, y = k2x + b2, то острый угол между этими прямыми будет определяться как .
Две прямые параллельны, если k1 = k2.
Две прямые перпендикулярны, если k1 = -1/k2.
Теорема. Прямые Ах + Ву + С = 0 и А1х + В1у + С1 = 0 параллельны, когда пропорциональны коэффициенты А1 = lА, В1 = lВ. Если еще и С1 = lС, то прямые совпадают.
Координаты точки пересечения двух прямых находятся как решение системы двух уравнений.
Определение. Прямая, проходящая через точку М1(х1, у1) и перпендикулярная к прямой у = kx + b представляется уравнением:
Теорема. Если задана точка М(х0, у0), то расстояние до прямой Ах + Ву + С =0 определяется как .
Общие уравнения прямой в пространстве. Уравнение прямой может быть рассмотрено как уравнение линии пересечения двух плоскостей.
Как было рассмотрено выше, плоскость в векторной форме может быть задана уравнением:
× + D = 0, где
- нормаль плоскости; - радиус- вектор произвольной точки плоскости.
Пусть в пространстве заданы две плоскости: × + D1 = 0 и × + D2 = 0, векторы нормали имеют координаты: (A1, B1, C1), (A2, B2, C2); (x, y, z).
Тогда общие уравнения прямой в векторной форме:
Общие уравнения прямой в координатной форме:
Практическая задача часто состоит в приведении уравнений прямых в общем виде к каноническому виду.
Для этого надо найти произвольную точку прямой и числа m, n, p.
При этом направляющий вектор прямой может быть найден как векторное произведение векторов нормали к заданным плоскостям.