Евклидово пространство. Неравенство Буняковского-Коши. Ортогональный и ортонормированный базисы. Разложение вектора по ортогональному базису

Евкли́дово простра́нство (также Эвкли́дово простра́нство) — в изначальном смысле, пространство, свойства которого описываются аксиомами евклидовой геометрии. В этом случае предполагается, что пространство имеет размерность 3.

В современном понимании, в более общем смысле, может обозначать один из сходных и тесно связанных объектов, определённых ниже. Обычно Евклидово пространство. Неравенство Буняковского-Коши. Ортогональный и ортонормированный базисы. Разложение вектора по ортогональному базису - student2.ru -мерное евклидово пространство обозначается Евклидово пространство. Неравенство Буняковского-Коши. Ортогональный и ортонормированный базисы. Разложение вектора по ортогональному базису - student2.ru , хотя часто используется не вполне приемлемое обозначение Евклидово пространство. Неравенство Буняковского-Коши. Ортогональный и ортонормированный базисы. Разложение вектора по ортогональному базису - student2.ru .

1. Конечномерное гильбертово пространство, то есть конечномерное вещественное векторное пространство Евклидово пространство. Неравенство Буняковского-Коши. Ортогональный и ортонормированный базисы. Разложение вектора по ортогональному базису - student2.ru с введённым на нём (положительно определенным) скалярным произведением, порождающим норму: Евклидово пространство. Неравенство Буняковского-Коши. Ортогональный и ортонормированный базисы. Разложение вектора по ортогональному базису - student2.ru ,в простейшем случае (евклидова норма):

Евклидово пространство. Неравенство Буняковского-Коши. Ортогональный и ортонормированный базисы. Разложение вектора по ортогональному базису - student2.ru

где Евклидово пространство. Неравенство Буняковского-Коши. Ортогональный и ортонормированный базисы. Разложение вектора по ортогональному базису - student2.ru (в евклидовом пространстве всегда можно выбрать базис, в котором верен именно этот простейший вариант).

2. Метрическое пространство, соответствующее пространству описанному выше. То есть Евклидово пространство. Неравенство Буняковского-Коши. Ортогональный и ортонормированный базисы. Разложение вектора по ортогональному базису - student2.ru с метрикой, введённой по формуле:

Евклидово пространство. Неравенство Буняковского-Коши. Ортогональный и ортонормированный базисы. Разложение вектора по ортогональному базису - student2.ru ,где Евклидово пространство. Неравенство Буняковского-Коши. Ортогональный и ортонормированный базисы. Разложение вектора по ортогональному базису - student2.ru и Евклидово пространство. Неравенство Буняковского-Коши. Ортогональный и ортонормированный базисы. Разложение вектора по ортогональному базису - student2.ru .

Неравенство Коши́ — Буняко́вского связывает норму и скалярное произведение векторов в евклидовом пространстве. Это неравенство эквивалентно неравенству треугольника для нормы.

Формулировка:Пусть дано линейное пространство Евклидово пространство. Неравенство Буняковского-Коши. Ортогональный и ортонормированный базисы. Разложение вектора по ортогональному базису - student2.ru со скалярным произведением Евклидово пространство. Неравенство Буняковского-Коши. Ортогональный и ортонормированный базисы. Разложение вектора по ортогональному базису - student2.ru . Пусть Евклидово пространство. Неравенство Буняковского-Коши. Ортогональный и ортонормированный базисы. Разложение вектора по ортогональному базису - student2.ru — норма, порождённая скалярным произведением, то есть Евклидово пространство. Неравенство Буняковского-Коши. Ортогональный и ортонормированный базисы. Разложение вектора по ортогональному базису - student2.ru . Тогда для любых Евклидово пространство. Неравенство Буняковского-Коши. Ортогональный и ортонормированный базисы. Разложение вектора по ортогональному базису - student2.ru имеем:

Евклидово пространство. Неравенство Буняковского-Коши. Ортогональный и ортонормированный базисы. Разложение вектора по ортогональному базису - student2.ru

причём равенство достигается тогда и только тогда, когда векторы Евклидово пространство. Неравенство Буняковского-Коши. Ортогональный и ортонормированный базисы. Разложение вектора по ортогональному базису - student2.ru и Евклидово пространство. Неравенство Буняковского-Коши. Ортогональный и ортонормированный базисы. Разложение вектора по ортогональному базису - student2.ru пропорциональны (коллинеарны).

Ортогональный базис — базис, составленный из попарно ортогональных векторов.

Ортонормированный базис удовлетворяет еще и условию единичности нормы всех его элементов. То есть это ортогональный базис с нормированными элементами.

Последнее удобно записывается при помощи символа Кронекера: Евклидово пространство. Неравенство Буняковского-Коши. Ортогональный и ортонормированный базисы. Разложение вектора по ортогональному базису - student2.ru

то есть скалярное произведение каждой пары базисных векторов равно нулю, когда они не совпадают ( Евклидово пространство. Неравенство Буняковского-Коши. Ортогональный и ортонормированный базисы. Разложение вектора по ортогональному базису - student2.ru ), и равно единице при совпадающем индексе, то есть когда берется скалярное произведение любого базисного вектора с самим собой.

Очень многое записывается в ортогональном базисе гораздо проще, чем в произвольном, поэтому очень часто стараются использовать именно такие базисы, если только это возможно или использование какого-то специального неортогонального базиса не дает особых специальных удобств. Или если не отказываются от него в пользу базиса общего вида из соображений общности.

Ортонормированный базис является самодуальным (дуальный ему базис совпадает с ним самим). Поэтому в нём можно не делать различия между верхними и нижними индексами, и пользоваться, скажем, только нижними (как обычно и принято, если конечно при этом используются только ортонормированные базисы).

Линейная независимость следует из ортогональности, то есть достигается для ортогональной системы векторов автоматически.

Коэффициенты в разложении вектора по ортогональному базису:

Евклидово пространство. Неравенство Буняковского-Коши. Ортогональный и ортонормированный базисы. Разложение вектора по ортогональному базису - student2.ru

можно найти так:

Евклидово пространство. Неравенство Буняковского-Коши. Ортогональный и ортонормированный базисы. Разложение вектора по ортогональному базису - student2.ru .

Полнота ортонормированной системы векторов эквивалентна равенству Парсеваля: для любого вектора Евклидово пространство. Неравенство Буняковского-Коши. Ортогональный и ортонормированный базисы. Разложение вектора по ортогональному базису - student2.ru квадрат нормы вектора равен сумме квадратов коэффициентов его разложения по базису:

Евклидово пространство. Неравенство Буняковского-Коши. Ортогональный и ортонормированный базисы. Разложение вектора по ортогональному базису - student2.ru

ВОПРОС 27 Линейные операторы. Матрица линейного оператора. Действия над линейными операторами. Зависимость между матрицами линейного оператора в различных базисах.

пусть заданы линейные пространства X и Y. Правило, по которому каждому элементу x e X ставится в соответствие единственный элемент y e Y , называется оператором, действующим в линейных пространствах X , Y. Результат действия оператора A на элемент x обозначают y = A x или y = A(x). Если элементы x и y связаны соотношением y = A x, то y называют образом элемента x; элемент x прообразом элемента y.

Множество элементов линейного пространства X, для которых определено действие оператора A, называют областью определения оператора и обозначают D(A).

Множество элементов линейного пространства Y, которые являются образами элементов из области определения оператора A, называют образом оператора и обозначают Im(A). Если y = A x , то x e D(A), y e Im(A) .

Оператор A, действующий в линейных пространствах X , Y называется линейным оператором, если

A(u+v)=A(u)+A(v) и A(au)=aA(u) и для любых u,v e X и для любого числа a.

Если пространства X и Y совпадают, то говорят, что оператор действует в пространстве X. В дальнейшем ограничимся рассмотрением линейных операторов, действующих в линейном пространстве X.

Наши рекомендации