Геометрическая вероятность

Формула классической вероятности применяется только в схеме случаев, что встречается довольно редко. Отношение Р(А)= NA/N представляет собой «долю» благоприятных исходов среди всех возможных исходов. Аналогичным образом подсчитывают вероятность события в некоторых более сложных случаях, когда имеется бесконечное число равновозможных исходов.

Геометрическая вероятность - student2.ru Событие А – волчок касается плоскости точкой из окрашенного сектора. Множество точек на ободе в окрашенном секторе имеет мощность континуума. Делим всю окружность на N маленьких одинаковых дуг. Число дуг на окружности, принадлежащих окрашенному сектору, пусть равно NA. Геометрическая вероятность - student2.ru . В общем случае имеется мера mes Геометрическая вероятность - student2.ru соответствующая Геометрическая вероятность - student2.ru (в нашем случае mes Геометрическая вероятность - student2.ru = 2 Геометрическая вероятность - student2.ru ) и мера mes А, соответствующая А (в нашем случае mesА = Геометрическая вероятность - student2.ru ) Геометрическая вероятность - student2.ru и т.д.

Пример. Задача о встрече. Два студента договорились встретиться от 10 до 11 часов на определенном месте, причем первый пришедший на место ждет товарища 15 минут и уходит. Какова вероятность встречи?

Выберем начало системы координат в точке (10, 10). Отложим по осям системы координат x- время прихода первого студента, y – время прихода второго студента.

Геометрическая вероятность - student2.ru Тогда множество |x-y|<1/4, 0<x<1, 0<x<1, 0<y<1

содержит точки (события) встречи студентов. Его мера (площадь) mesA равна 1- (3/4)2 = 7/16. Так как mesW =1, то P(A) = 7/16.

Статистическая вероятность

Формулы классической вероятности и геометрической вероятности справедливы только для случая равновозможных исходов. В действительности мы на практике имеем место с неравновозможными исходами. В этих случаях можно определить вероятность случайного события, используя понятие частоты события. Допустим, что нам требуется определить вероятность того, что в испытании произойдет событие А. Для этого в одинаковых условиях проводятся испытания, в каждом из которых возможны два исхода: А и Геометрическая вероятность - student2.ru . Частотой события А будем называть отношение числа NA испытаний, в которых зафиксировано событие А к общему числу N испытаний.

Вероятностью события А называется предел частоты события А при неограниченном увеличении числа испытаний n Геометрическая вероятность - student2.ru , т.е. Геометрическая вероятность - student2.ru . Так определяется статистическая вероятность события.

Заметим, что по классическому, геометрическому и статистическому определениям для вероятности события P(A) выполнены три основных свойства:

P(A)³0, 2) P(W)=1, 3) P(A1+ …+An) = P(A1) + …+P(An), если A1, An попарно несовместны. Однако в этих определениях элементарные события предполагаются равновозможными.

А.Н. Колмогоров отказался от предположения равновозможности элементарных событий, ввел сигма-алгебру событий и распространил третье свойство на счетное число событий. Это дало возможность дать аксиоматическое определение вероятности события.

Аксиоматическое определение вероятности(по А.Н.Колмогорову).

Вероятностью P(A) называется числовая функция, заданная на сигма – алгебре событий, удовлетворяющая трем аксиомам:

1) не отрицательность P(A)³0, "AÎB - сигма – алгебре событий на W

2) нормировка P(W) = 1

3) расширенная аксиома сложения: для любых попарно несовместных событий A1, … An … выполнено

P(A1+ …+An+ …) = P(A1) + …+P(An) +…

(счетная аддитивность).

Итак, по А.Н. Колмогорову вероятность (вероятностная мера) это числовая неотрицательная нормированная счетно - аддитивная функция (множества – события), заданная на сигма – алгебре событий.

Если W состоит из конечного или счетного числа событий, то в качестве сигма – алгебры B может рассматриваться алгебра S событий. Тогда по аксиоме 3 вероятность любого события A равна сумме вероятностей элементарных событий, составляющих A.

Вероятностным пространствомназывается тройка (W, B, P).

Свойства вероятности

1) Геометрическая вероятность - student2.ru . В самом деле, Геометрическая вероятность - student2.ru , Геометрическая вероятность - student2.ru несовместны. По аксиоме 3 Геометрическая вероятность - student2.ru Геометрическая вероятность - student2.ru .

2) P(Æ) = 0. Так как "A A+Æ = A, по аксиоме 3 P(A+Æ) = P(A) + P(Æ) = P(A) ÞP(Æ) = 0

3) Если AÌ B, то P(A) £ P(B). Так как B = A+ B\A, по аксиоме 3 P(B) = P(A) + P(B\A), но по аксиоме 1 P(B\A)³0

Пример. Из урны с четырьмя шарами с номерами 1, 2, 3, 4 три раза наугад вынимают шар и записывают его номер а) возвращая шары б) не возвращая шары. Какова вероятность 1) получить комбинацию 111, 2) из номеров шаров составить возрастающую последовательность?

В случае а) имеем размещения с возвращением, N = 43, 1), NA=1, P = ¼3, 2) NA = Геометрическая вероятность - student2.ru , так как возрастающую последовательность можно составить всегда из не повторяющихся номеров, P = Геометрическая вероятность - student2.ru / 43 .

В случае б) N = Геометрическая вероятность - student2.ru ,1) P = 0, так как номера шаров не повторяются, то NA =0, 2) P = 1, так как N = NA = Геометрическая вероятность - student2.ru .

Пример. Пять человек садятся в поезд метро, состоящий из пяти вагонов. Какова вероятность того, что они окажутся в разных вагонах?

Общее число элементарных событий равно числу размещений с повторением из пяти элементов по пять N = 55. Число элементарных событий, составляющих А, равно 5! Поэтому Р = 5!/ 55.

Лекция 2

Условная вероятность.

Часто приходится вычислять вероятность события А при дополнительном условии, что произошло событие В. Такую вероятность будем называть условной и обозначать Р(А/В) (вероятность события А при условии, что событие В наступило).

Если никаких дополнительных условий не накладывается, то вероятность называется безусловной. Это – обычная, определенная выше вероятность.

Рассмотрим пример. Пусть в данной аудитории присутствует N студентов. Среди них NA –любящих математику, NB – любящих физику, NАВ – любящих и математику, и физику. Лектор случайно выбирает одного студента. Введем следующие события:

А – случайно выбранный студент любит математику, В – физику, АВ – и математику, и физику. На диаграммах Венна это выглядит так.

Геометрическая вероятность - student2.ru Тогда вероятности этих событий равны:

Геометрическая вероятность - student2.ru (2.1)

Геометрическая вероятность - student2.ru (2.2)

Геометрическая вероятность - student2.ru (2.3)

Это безусловные вероятности.

Предположим теперь, что мы захотели узнать вероятность того, что случайно выбранный любитель физики любит еще и математику. В этом случае количество всех возможных исходов NB (выбираем только любителей физики), а количество благоприятных исходов – NАВ.

На диаграмме Венна это выглядит так

Геометрическая вероятность - student2.ru

Тогда, учитывая (2.2) и (2.3), получим

Геометрическая вероятность - student2.ru = Геометрическая вероятность - student2.ru = Геометрическая вероятность - student2.ru (2.4)

Мы рассмотрели частный случай. Введем в общем случае следующее формальное определение.

Определение. Пусть В – событие, имеющее ненулевую вероятность, а А произвольное событие.

Положим Геометрическая вероятность - student2.ru . (2.5)

Определенную таким образом величину Р(А/В) будем называть условной вероятностью события А при условии В.

Наши рекомендации