Задачи и упражнения для самостоятельного решения

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ

УНИВЕРСИТЕТ

ХИМИЯ

УЧЕБНОЕ ПОСОБИЕ ДЛЯ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

ИЗДАТЕЛЬСТВО

Иркутского государственного технического университета

ВВЕДЕНИЕ

При изучении курса химии большое значение имеет приобретение навыков в решении задач, что является одним из критериев прочного усвоения теоретических и практических знаний. Поэтому после каждой темы приведены примеры решения типовых задач и варианты индивидуальных заданий, которые студент должен выполнить.

Учебное пособие для практических занятий студентов 1 курса технических направлений и специальностей.

Составили: С.С. Бочкарёва, В.Г. Соболева- Иркутск: Изд-во ИрГТУ, 2014. - 179 c.

Пособие включает задачи по наиболее важным разделам курса общей химии, решение которых способствует усвоению и закреплению изучаемого материала.

Разделы имеют краткое теоретическое введение, методические рекомендации по решению типовых задач, задачи для самостоятельного решения. Пособие также включает справочный материал.

Библиогр. 7 назв. Табл. 5.

Рецензент: д-р хим. наук, профессор кафедры Технологии продуктов питания и химии Иркутского государственного технического университета Ю.Н. Пожидаев.

ОГЛАВЛЕНИЕ

Введение........................................................................................  
1. Основные классы неорганических соединений...............  
2. Эквивалент. Молярная масса эквивалентов…………….  
3. Строение атома…………………………………………… 4. Периодическая система элементов Д.И. Менделеева….. 5. Химическая связь и строение молекул………………….. 6. Энергетика и направление химических процессов……..  
7. Скорость химической реакции...........................................  
8. Катализ.................................................................................  
9. Химическое равновесие......................................................  
10.Способы выражения концентрации растворов…………..  
11. Реакции в растворах электролитов....................................  
12. Гидролиз солей....................................................................  
13. Коллоидные растворы.......................................................  
14. Окислительно-восстановительные реакции...................  
15. Коррозия металлов............................................................  
16. Электролиз.........................................................................  
17. Химические свойства металлов.......................................  
18. Комплексные соединения................................................  
19. S -металлы..........................................................................  
20. Жесткость воды.................................................................  
21. Алюминий, олово, свинец................................................  
22. Металлы подгрупп меди и цинка....................................  
23. Хром...................................................................................  
24. Марганец............................................................................  
25. Железо, кобальт, никель...................................................  
26. Галогены............................................................................  
27. Кислород. Пероксид водорода.........................................  
28. Сера.....................................................................................  
29. Азот.....................................................................................  
30. Углерод, кремний.............................................................  
31. Углеводороды....................................................................  
32. Спирты, альдегиды, кетоны.............................................  
33. Органические кислоты......................................................  
34. Качественный анализ металлов.......................................  
35. Качественные реакции на анионы...................................  
36. Количественный анализ……………………………………  
Заключение....................................................................................  
Библиографический список..........................................................  
Приложение (Табл. 1, табл. 2, табл. 3, табл. 4, табл. 5) ...........  

Основные классы неорганических соединений

Теоретическое введение

Все вещества делятся на простые и сложные. Сложные вещества подразделяются на классы: оксиды, кислоты, основания, соли.

Оксиды – это сложные вещества, состоящие из двух элементов, одним из которых является кислород в степени окисления -2. По химическим свойствам оксиды делятся на основные, кислотные и амфотерные (табл. 1.1).

Таблица 1.1

Химические свойства оксидов

  Взаимодействие оксидов Оксиды
Основные Na2O, CaO, MgO, CuO, Fe2O3, ВаО Кислотные SO2, SO3, P2O5, CO2, Cl2O, Mn2O7, CrO3 Амфотерные ВеО, ZnO, PbO, MnO2, SnO, Al2O3, Cr2O3
  С водой Реагируют только оксиды щелочных и щелочноземельных металлов, образуя щелочи: Na2O + H2O = 2NaOH Образуют кислоты: SO3 + H2O = H2SO4   Не взаимодействуют
    С кислотами или основаниями Взаимодействуют с кислотами с образованием соли и воды: CаO + 2HCl = = CаCl2 + H2O Взаимодействуют с основаниями с образованием соли и воды: CO2 + Ba(OH)2 = = BaCO3 + H2O Взаимодействуют с кислотамикак основные оксиды: BeO + 2HNO3 = Be(NO3)2 + H2O и с основаниями как кислотные оксиды: BeO + 2KOH Задачи и упражнения для самостоятельного решения - student2.ru K2BeO2 + H2O; BeO + 2KOH + H2O = K2[Be(OН)4]
Между собой При взаимодействии основного и кислотного оксидов образуется соль: Na2O + SO3 = Na2SO4

Одним из способов получения оксидов является взаимодействие простых веществ с кислородом: 2Са + O2 = 2СаO; С + O2 = СО2.

Кислоты – сложные вещества, состоящие из атомов водорода, способных замещаться на металл, и кислотного остатка (HNO3, HCl, H2SO4, Н3РО4).

Кислоты взаимодействуют

1. С основаниями с образованием соли и воды:

2HNO3 + Ca(OH)2 = Ca(NO3)2 + 2H2O.

2. С основными и амфотерными оксидами с образованием соли и воды:

2HCl + ВаO = ВаCl2 + H2O;

3H2SO4 + Al2O3 = Al2(SO4)3 + 3H2O.

3. С солями с образованием новой соли и новой кислоты:

H2SO4 + Ba(NO3)2 = BaSO4↓ + 2HNO3.

Одним из способов получения кислот является взаимодействие кислотного оксида с водой:

P2O5 + 3H2O = 2H3PO4.

Основания – сложные вещества, состоящие из атомов металла, связанных с одной или несколькими гидроксогруппами (NaOH, Cu(OH)2, Fe(OH)3).

Основания взаимодействуют

1. С кислотами с образованием соли и воды:

2NaOH + H2SO4 = Na2SO4 + 2H2O.

2. С кислотными и амфотерными оксидами с образованием соли и воды:

2KOH + N2O5 = 2KNO3 + H2O;

2NaOH + Al2O3 + 3Н2О = 2Na[Al(OH)4];

2NaOH + Al2O3 Задачи и упражнения для самостоятельного решения - student2.ru 2NaAlO2 + H2O.

3. С солями с образованием новой соли и нового основания:

2NaOH + MgCl2 = Mg(OH)2↓ + 2NaCl.

Растворимые в воде основания (щелочи) получают взаимодействием активных металлов или их оксидов с водой:

2Na + 2H2O = 2NaOH + H2↑;

BaO + H2O = Ba(OH)2.

Нерастворимые в воде основания получают реакцией обмена:

Fe2(SO4)3 + 6KOH = 2Fe(OH)3↓ + 3K2SO4.

Соли – это продукты полного или частичного замещения атомов водорода в молекуле кислоты атомами металла или продукты полного или частичного замещения гидроксогрупп в молекуле основания кислотными остатками.

Средние соли (К2SO4, Na3PO4) – это продукты полного замещения водорода в кислоте на металл или гидроксогрупп в основании на кислотные остататки: H2SO4 + 2KOH = K2SO4 + 2H2O;

Mg(ОН)2 + 2HCl = MgCl2 + 2Н2О.

Кислые соли (Сa(HCO3)2, Nа2НРО4) – это продукты неполного замещения водорода в кислоте на металл:

KOH + H2SO4 = KHSO4 + H2O.

Кислые соли образуют только многоосновные кислоты, например H2SO4, Н3РО4, Н2СО3, H2S.

Основные соли (СuOHNO3, AlOHCl2) – это продукты неполного замещения гидроксогрупп в основании на кислотные остатки:

Fe(ОН)3 + HNO3 = Fe(OH)2NO3 + 2Н2О;

Fe(ОН)3 + 2HNO3 = FeOH(NO3)2 + 2Н2О.

Основные соли образуют только многокислотные основания, например Сu(OH)2, Fe(OH)3, Mg(ОН)2.

Примеры решения задач

Пример 1.1.Составить уравнения реакций, при помощи которых можно осуществить следующие превращения:

Na → NaOH → NaHS → Na2S → Na2SO4 → NaCl.

Решение. NaOH (гидроксид натрия) – основание (щелочь). Щелочи можно получить взаимодействием активного металла (в данном примере натрия) с водой:

2Na + 2H2O = 2NaOH + H2↑.

NaHS (гидросульфид натрия) – кислая соль. Кислые соли получаются при взаимодействии многоосновных кислот с основаниями в тех случаях, когда количество взятого основания недостаточно для образования средней соли:

H2S + NaOH = NaHS.

Na2S (сульфид натрия) – средняя соль. Образуется при действии избытка щелочи на кислую соль:

NaHS + NaОН = Na2S + H2O.

Na2SO4 (сульфат натрия), NaCl (хлорид натрия) – средние соли. Средние соли можно получить взаимодействием кислоты и соли:

H2SO4 + Na2S = Na2SO4 + H2S↑,

взаимодействием двух солей:

Na2SO4 + СаCl2 = 2NaCl + СaSO4↓.

Пример 1.2. С какими из указанных ниже веществ будет взаимодействовать H2SO4: CO2; NaOH; BaCl2; HCl; Fe2O3. Написать уравнения соответствующих реакций.

Решение. Определяем, к каким классам относятся указанные соединения: CO2 – кислотный оксид, NaOH – основание (щелочь), BaCl2 – соль, HCl − кислота, Fe2O3 – основной оксид. Серная кислота будет взаимодействовать с основанием, основным оксидом и солью:

H2SO4 + 2NaOH = Na2SO4 + 2H2O;

3H2SO4 + Fe2O3 = Fe2(SO4)3 + 3H2O;

H2SO4 + BaCl2 = BaSO4↓ + 2HCl.

Задачи и упражнения для самостоятельного решения

1.1. а). Написать уравнения реакций, при помощи которых можно осуществить следующие превращения:

.

б). Какие из приведенных веществ будут взаимодействовать между собой: Ca(OH)2 и NaOH; Pb(OH)2 и KOH; H2SO4 и H2SO3; HCl и Na2S; HNO3 и MgO? Написать уравнения соответствующих реакций.

1.2. а). Составить уравнения реакций, при помощи которых можно осуществить следующие превращения:

FeCl2 → Fe(OH)2 → Fe(OH)3 → Fe2O3 → Fe2(SO4)3.

б). Какие из приведенных оксидов будут реагировать с HCl: N2O5; SO3; Al2O3; Cl2O7; ZnO; K2O? Написать уравнения соответствующих реакций.

1.3. а). Составить уравнения реакций, при помощи которых можно осуществить следующие превращения:

P → P2O5 → H3PO4 → Na3PO4 → Ca3(PO4)2.

б). Закончить уравнения реакций, доказывающих амфотерность оксида

свинца (II): основные свойства PbO + HNO3 → …;

кислотные свойства PbO + KOH Задачи и упражнения для самостоятельного решения - student2.ru … .

1.4. а). Написать уравнения реакций, при помощи которых можно осуществить следующие превращения:

N2 → NH3 → (NH4)2SO4 → NH4Cl → NH3 → NH4NO3.

б). Какие из приведенных оксидов реагируют с NaOH: MgO; Cl2O; Na2O; CrO3; CaO; CO2? Составить уравнения соответствующих реакций.

1.5. а). Составить уравнения реакций, при помощи которых можно осуществить следующие превращения:

Si → SiO2 → K2SiO3 → H2SiO3 → SiO2.

б). Какие из указанных ниже веществ могут взаимодействовать с раствором KOH: HI; CuCl2; SO2; Ba(OH)2; SnO? Написать уравнения соответствующих реакций.

1.6. а). Составить уравнения реакций, при помощи которых можно осуществить следующие превращения:

CaSO3 ← SO2 ← S → FeS → H2S → KHS.

б). Составить уравнения реакций между кислотами и основаниями, приводящих к образованию солей: Na2S; Fe2(SO4)3; K 3PO4.

1.7.а). Написать уравнения реакций, при помощи которых можно осуществить следующие превращения:

Ca → Ca(OH)2 → CaCO3 → CaCl2 → Ca3(PO4)2.

б). Составить уравнения реакций между кислотами и основаниями, приводящих к образованию солей: NaNO3; CaHРO4; CuOHCl.

1.8. а). Написать уравнения реакций, при помощи которых можно осуществить следующие превращения:

Cu → CuO → Cu(NO3)2 → Cu(OH)2 → CuCl2.

б). Между какими из приведенных пар веществ возможна реакция: CO2 и SO2; LiOH и CO2; P2O5 и CaO; NaOH и KOH; Li2O и ZnO; Li2O и Na2O? Составить уравнения соответствующих реакций.

1.9. а). Написать уравнения реакций, при помощи которых можно осуществить следующие превращения:

Cd → CdO → Cd(NO3)2 → Cd(OH)2 → CdSO4.

б). С какими из указанных ниже веществ может взаимодействовать серная кислота: HCl; BaCl2; MgO; CO2; NaOH; ZnO? Составить уравнения соответствующих реакций.

1.10. а). Составить уравнения реакций, при помощи которых можно осуществить следующие превращения:

Zn → ZnCl2 → Zn(OH)2 → ZnO → K2ZnO2.

б). Написать уравнения реакций образования солей: Na2SO3; Fe2(SO4)3; Ba(NO3)2 в результате взаимодействия основания и кислотного оксида.

1.11. а). Составить уравнения реакций, при помощи которых можно осуществить следующие превращения:

S → SO2 → SO3 → H2SO4 → KHSO4 → K2SO4.

б). Составить уравнения реакций образования солей: CaCO3; Al2(SO4)3; Na3PO4 в результате взаимодействия основного и кислотного оксидов.

1.12. а). Написать уравнения реакций, при помощи которых можно осуществить следующие превращения:

Al → Al2(SO4)3 → Al(OH)3 → Al2O3 → KAlO2.

б). Закончить уравнения реакций, доказывающих амфотерность оксида олова (II): основные свойства SnO + HCl → …;

кислотные свойства SnO + KOH Задачи и упражнения для самостоятельного решения - student2.ru ….

1.13. а). Составить уравнения реакций, при помощи которых можно осуществить следующие превращения:

Ba → BaO → Ba(OH)2 → Ba(NO3)2 → BaCO3 → BaCl2.

б). Какие из приведенных оксидов взаимодействуют с КОН: Na2O; CO2; Ga2O3; MgO; CuO; Mn2O7? Написать уравнения соответствующих реакций.

1.14. а). Составить уравнения реакций, при помощи которых можно осуществить следующие превращения:

Fe(NO3)3 → Fe(OH)3 → Fe2O3 → FeO → FeCl2 → FeS.

б). Какие вещества могут быть получены при взаимодействии кислоты с солью? Кислоты с основанием? Соли с солью? Привести примеры соответствующих реакций.

1.15. а). Написать уравнения реакций, при помощи которых можно осуществить следующие превращения:

Mg → MgSO4 → Mg(OH)2 → MgOHNO3 → Mg(NO3)2.

б). Составить уравнения реакций, при помощи которых, исходя из четырех простых веществ – калия, серы, водорода и кислорода, можно получить гидроксид калия КОН; сульфид калия K2S; сероводородH2S.

1.16. а). Составить уравнения реакций, при помощи которых можно осуществить следующие превращения:

ZnSO4 ← ZnO ← ZnS → ZnCl2 → Zn(OH)2 → Na2ZnO2.

б). Написать уравнения не менее четырех реакций, при помощи которых можно получить карбонат кальция CaCO3.

1.17. а). Составить уравнения реакций, при помощи которых можно осуществить следующие превращения:

CuOHCl ← Cu(OH)2 ← CuSO4 ← Cu → CuO → CuCl2.

б). Написать уравнения реакций образования K2CrO4, Mg(NO3)2, BaSO4, Ca(ClO)2 в результате взаимодействия основания и кислотного оксида.

1.18. а). Написать уравнения реакций, при помощи которых можно осуществить следующие превращения:

Fe → FeSO4 → Fe(OH)2 → Fe(OH)3 → Fe2O3 → FeCl3.

б). Могут ли находиться совместно в растворе: Ba(OH)2 и FeCl3; HCl и H2S; NaOH и НBr; NaOH и KOH; HCl и Na2CO3? Дать обоснованный ответ и привести уравнения соответствующих реакций.

1.19. а). Написать уравнения реакций, при помощи которых можно осуществить следующие превращения:

Al → Al2O3 → AlCl3 → Al(OH)3 → NaAlO2.

б). Как, используя BaO, FeCl3, H2SO4, H2O, CuO, можно получить: гидроксид бария; гидроксид железа (III); сульфат меди (II)? Составить уравнения соответствующих реакций.

1.20. а). Написать уравнения реакций, при помощи которых можно осуществить следующие превращения:

Pb → PbS → PbO → Pb(NO3)2 → Pb(OH)2 → K2PbO2.

б). Составить уравнения четырех реакций, в результате которых образуется бромид натрия NaBr.

Эквивалент

Эквивалент(Э) – это реальная или условная частица вещества, соответствующая одному иону водорода в кислотно-основных или ионообменных реакциях, или одному электрону в окислительно-восстановительных реакциях. Под реальной частицей понимают реально существующие соединения (NaOH, H2SO4, H2O), под условной – доли этих реальных частиц (½ H2SO4, ½ H2O). Эквивалент – безразмерная величина, состав которой выражают с помощью знаков и формул. Например,

Э (NaOH) = NaOH; Э (H2SO4) = ½ H2SO4; Э (MgCl2) = ½ MgCl2; Э (Са) = ½ Са.

Единицей количества вещества эквивалентов является моль. Моль эквивалентов – это количество вещества, содержащего 6,02×1023 эквивалентов. Масса одного моля эквивалентов называется молярной массойэквивалентов(Mэк)и выражаетсяв г/моль.

При определении молярной массы эквивалентов необходимо исходить из конкретной реакции, в которой участвует данное вещество.

Молярная масса эквивалентов вещества В, участвующего в окислительно-восстановительной реакции, рассчитывается по формуле

Задачи и упражнения для самостоятельного решения - student2.ru ,

где МВ – молярная масса вещества В; nē – число электронов, присоединенных одной молекулой окислителя или отданных одной молекулой восстановителя.

Например, в реакции Mg0 + 2H+Cl = Mg+2Cl2 + H20 степень окисления магния изменяется от 0 до +2. Следовательно, магний теряет 2 электрона, т.е. одному электрону эквивалентна условная частица ½ атома Mg:

Э (Mg) = ½ Mg ; Мэк (Mg) = Задачи и упражнения для самостоятельного решения - student2.ru = 12 г/моль.

У водорода степень окисления меняется от +1 до 0, а т.к. молекула водорода состоит из двух атомов, то число принятых электронов будет равно 2. Таким образом, одному электрону эквивалентна условная частица ½ молекулы Н2:

Э (Н2) = ½ Н2 ; Мэк 2) = Задачи и упражнения для самостоятельного решения - student2.ru = 1 г/моль.

Закон эквивалентов: массы реагирующих друг с другом веществ пропорциональны их молярным массам эквивалентов:

Задачи и упражнения для самостоятельного решения - student2.ru .

Примеры решения задач

Пример 2.1.Рассчитать эквивалент и молярную массу эквивалентов H2S и NaOH в реакциях:

H2S + 2NaOH = Na2S + 2H2O; (1)

H2S + NaOH = NaHS + H2O. (2)

Решение. Молярная масса эквивалентов кислоты или основания, участвующихв кислотно-основной реакции, рассчитывается по формуле

Мэк (кислоты, основания) = Задачи и упражнения для самостоятельного решения - student2.ru ,

где М – молярная масса кислоты или основания; n – для кислот – число атомов водорода, замещенных в данной реакции на металл; для оснований – число гидроксильных групп, замещенных в данной реакции на кислотный остаток.

Значение эквивалента и молярной массы эквивалентов вещества зависит от реакции, в которой это вещество участвует.

В реакции H2S + 2NaOH = Na2S + 2H2O (1) оба иона водорода молекулы H2S замещаются на металл и, таким образом, одному иону водорода эквивалентна условная частица ½ H2S. В этом случае

Э (H2S) = ½ H2S, а Мэк (H2S)= Задачи и упражнения для самостоятельного решения - student2.ru = 17 г/моль.

В реакции H2S + NaOH = NaHS + H2O (2) в молекуле H2S на металл замещается только один ион водорода и, следовательно, одному иону Задачи и упражнения для самостоятельного решения - student2.ru эквивалентна реальная частица – молекула H2S. В этом случае

Э (H2S) = H2S, а Мэк (H2S) = Задачи и упражнения для самостоятельного решения - student2.ru = Задачи и упражнения для самостоятельного решения - student2.ru 34 г/моль.

Эквивалент NaOH в реакциях (1) и (2) равен NaOH, так как в обоих случаях на кислотный остаток замещается одна гидроксильная группа. Молярная масса эквивалентов NaOH равна

Мэк (NaOH) = 40 г/моль.

Таким образом, эквивалент H2S в реакции (1) равен ½ H2S, в реакции (2) − 1 H2S, молярные массы эквивалентов H2S равны соответственно 17 (1) и 34 (2) г/моль; эквивалент NaOH в реакциях (1) и (2) равен NaOH, молярная масса эквивалентов основания составляет 40 г/моль.

Пример 2.2. Рассчитать эквивалент и молярную массу эквивалентов оксидов P2O5 и CaO в реакции P2O5 + 3CaO = Ca3(PO4)2.

Решение. Молярная масса эквивалентов оксида рассчитывается по формуле

Мэк (оксида) = Задачи и упражнения для самостоятельного решения - student2.ru ,

где М – молярная масса оксида; n – число катионов соответствующего оксиду основания или число анионов соответствующей оксиду кислоты; |c.o.| – абсолютное значение степени окисления катиона или аниона.

В реакции P2O5 + 3CaO = Ca3(PO4)2 эквивалент P2O5, образующего два трехзарядных аниона (РО4)3-, равен 1/6 P2O5, а Мэк (P2O5) = Задачи и упражнения для самостоятельного решения - student2.ru = 23,7 г/моль. Эквивалент СаО, дающего один двухзарядный катион (Са2+), равен ½ СаО, а Мэк (СаО)= Задачи и упражнения для самостоятельного решения - student2.ru = Задачи и упражнения для самостоятельного решения - student2.ru 28 г/моль.

Пример 2.3.Вычислить эквивалент и молярную массу эквивалентов фосфора в соединениях РН3, Р2О3 и Р2О5.

Решение.Чтобы определить молярную массу эквивалентов элемента в соединении, можно воспользоваться следующей формулой:

Мэк (элемента) = Задачи и упражнения для самостоятельного решения - student2.ru ,

где МА – молярная масса элемента; |c.o.| – абсолютное значение степени окисления элемента.

Степень окисления фосфора в РН3, Р2О3, Р2О5 соответственно равна –3, +3 и +5. Подставляя эти значения в формулу, находим, что молярная масса эквивалентов фосфора в соединениях РН3 и Р2О3 равна 31/3 = 10,3 г/моль; в Р2О5 – 31/5 = 6,2 г/моль, а эквивалент фосфора в соединениях РН3 и Р2О3 равен 1/3 Р, в соединении Р2О51/5 Р.

Пример 2.4.Рассчитать молярную массу эквивалентов соединений фосфора РН3, Р2О3 и Р2О5.

Решение. Молярная масса эквивалентов химического соединения равна сумме молярных масс эквивалентов составляющих его частей:

Мэк (РН3) = Мэк (Р) + Мэк (Н) = 10,3 + 1 = 11 г/моль;

Мэк2О3) = Мэк (Р) + Мэк (О) = 10,3 + 8 = 18,3 г/моль;

Мэк2О5) = Мэк (Р) + Мэк (О) = 6,2 + 8 = 14,2 г/моль.

Пример 2.5.На восстановление 7,09 г оксида металла со степенью окисления +2 требуется 2,24 л водорода при нормальных условиях. Вычислить молярные массы эквивалентов оксида и металла. Чему равна молярная масса металла?

Решение. Задача решается по закону эквивалентов. Так как одно из реагирующих веществ находится в газообразном состоянии, то удобно воспользоваться следующей формулой:

Задачи и упражнения для самостоятельного решения - student2.ru ,

где Vэк (газа) – объем одного моля эквивалентов газа. Для вычисления объема моля эквивалентов газа необходимо знать число молей эквивалентов (υ) в одном моле газа: υ = Задачи и упражнения для самостоятельного решения - student2.ru . Так, М (Н2) = 2 г/моль; Мэк2) = 1 г/моль. Следовательно, в одном моле молекул водорода Н2 содержится υ = 2/1 = 2 моль эквивалентов водорода. Как известно, моль любого газа при нормальных условиях (н.у.) (Т = 273 К, Р = 101,325 кПа) занимает объем 22,4 л. Значит, моль водорода займет объем 22,4 л, а так как в одном моле водорода содержится 2 моль эквивалентов водорода, то объем одного моля эквивалентов водорода равен Vэк2) = 22,4/2 = 11,2 л. Аналогично М (О2) = 32 г/моль, Мэк2) = 8 г/моль. В одном моле молекул кислорода О2 содержится υ = 32/8 = 4 моль эквивалентов кислорода. Один моль эквивалентов кислорода при нормальных условиях занимает объем Vэк2) = 22,4/4 = 5,6 л.

Подставив в формулу Задачи и упражнения для самостоятельного решения - student2.ru численные значения, находим, что Мэк (оксида) = Задачи и упражнения для самостоятельного решения - student2.ru г/моль.

Молярная масса эквивалентов химического соединения равна сумме молярных масс эквивалентов составляющих его частей. Оксид – это соединение металла с кислородом, поэтому молярная масса эквивалентов оксида представляет собой сумму Мэк (оксида) = Мэк (металла) + Мэк (кислорода). Отсюда Мэк (металла) = Мэк (оксида) − Мэк (кислорода) = 35,45 – 8 = 27,45 г/моль.

Молярная масса эквивалентов элемента (Мэк) связана с атомной массой элемента (МА) соотношением: Мэк (элемента) = Задачи и упражнения для самостоятельного решения - student2.ru , где ½с.о.½ − степень окисления элемента. Отсюда МА = Мэк (металла) ∙ ½с.о.½ = 27,45×2 = 54,9 г/моль.

Таким образом, Мэк (оксида) = 35,45 г/моль; Мэк (металла) = 27,45 г/моль; МА (металла) = 54,9 г/моль.

Пример 2.6. При взаимодействии кислорода с азотом получено 4 моль эквивалентов оксида азота (IV). Рассчитать объемы газов, вступивших в реакцию при нормальных условиях.

Решение. По закону эквивалентов число молей эквивалентов веществ, вступающих в реакцию и образующихся в результате реакции, равны между собой, т.е. υ (О2) = υ (N2) = υ (NO2). Так как получено 4 моль эквивалентов оксида азота (IV), то, следовательно, в реакцию вступило 4 моль эквивалентов О2 и 4 моль эквивалентов N2.

Азот изменяет степень окисления от 0 (в N2) до +4 (в NО2), и так как в его молекуле 2 атома, то вместе они отдают 8 электронов, поэтому

Мэк (N2) = Задачи и упражнения для самостоятельного решения - student2.ru = 3,5 г/моль. Находим объем, занимаемый молем эквивалентов азота (IV): 28 г/моль N2 – 22,4 л

3,5 г/моль N2 – х

х = Задачи и упражнения для самостоятельного решения - student2.ru л.

Так как в реакцию вступило 4 моль эквивалентов N2, то их объем составляет V (N2) = 2,8·4 = 11,2 л. Зная, что моль эквивалентов кислорода при нормальных условиях занимает объем 5,6 л, рассчитываем объем 4 моль эквивалентов О2, вступивших в реакцию: V (O2) = 5,6∙4 = 22,4 л.

Итак, в реакцию вступило 11,2 л азота и 22,4 л кислорода.

Пример 2.7. Определить молярную массу эквивалентов металла, если из 48,15 г его оксида получено 88,65 г его нитрата.

Решение. Учитывая, что Мэк (оксида) = Мэк (металла) + Мэк (кислорода), а Мэк (соли) = Мэк (металла) + Мэк (кислотного остатка), подставляем соответствующие данные в закон эквивалентов:

Задачи и упражнения для самостоятельного решения - student2.ru ;

Задачи и упражнения для самостоятельного решения - student2.ru ,

отсюда Мэк (металла) = 56,2 г/моль.

Пример 2.8. Вычислить степень окисления хрома в оксиде, содержащем 68,42 % (масс.) этого металла.

Решение. Приняв массу оксида за 100 %, находим массовую долю кислорода в оксиде: 100 – 68,42 = 31,58 %, т.е. на 68,42 частей массы хрома приходится 31,58 частей массы кислорода, или на 68,42 г хрома приходится 31,58 г кислорода. Зная, что молярная масса эквивалентов кислорода равна 8 г/моль, определим молярную массу эквивалентов хрома в оксиде по закону эквивалентов:

Задачи и упражнения для самостоятельного решения - student2.ru ; Мэк (Cr) = Задачи и упражнения для самостоятельного решения - student2.ru г/моль.

Степень окисления хрома находим из соотношения Задачи и упражнения для самостоятельного решения - student2.ru ,

отсюда |c. o.| = Задачи и упражнения для самостоятельного решения - student2.ru = 3.

Наши рекомендации