Замена переменных в определенном интеграле

Перейдём к вычислению определённого интеграла методом замены переменной. Пусть

где, по определению, F(x) – первообразная для f(x). Если в подынтегральном выражении произвести замену переменной

то в соответствии с формулой (16) можно записать

В этом выражении

первообразная функция для

В самом деле, её производная, согласно правилу дифференцирования сложной функции, равна

Пусть α и β – значения переменной t , при которых функция

принимает соответственно значения aи b, т.е.

Тогда

Но, согласно формуле Ньютона-Лейбница, разность F(b) – F(a) есть

поскольку F(x) – первообразная для f(x).

Итак,

(50)

Это и есть формула перехода к новой переменной под знаком определённого интеграла. С её помощью определённый интеграл

после замены переменной

преобразуется в определённый интеграл относительно новой переменной t. При этом старые пределы интегрирования a и bзаменяются новыми пределами и . Чтобы найти новые пределы, нужно в уравнение

поставить значения x = aи x = b, т.е. решить уравнения

и

относительно и . После нахождения новых пределов интегрирования вычисление определённого интеграла сводится к применению формулы Ньютона-Лейбница к интегралу от новой переменной t. В первообразной функции, которая получается в результате нахождения интеграла, возвращаться к старой переменной нет необходимости.

При вычислении определённого интеграла методом замены переменной часто бывает удобно выражать не старую переменную как функцию новой, а, наоборот, новую – как функцию старой.

8. Интегрирование по частям в определенном интеграле.

При выводе формулы интегрирования по частям было получено равенство u dv= d(uv) – v du. Проинтегрировав его в пределах от a до b и учитывая теорему 4 параграфа о свойствах определённого интеграла, получим

Как это следует из теоремы 2 параграфа о свойствах неопределённого интеграла, первый член в правой части равен разности значений произведения uvпри верхнем и нижнем пределах интегрирования. Записав эту разность кратко в виде

получаем формулу интегрирования по частям:

9.Вычисление площади плоской фигуры.

Пусть функция f (х) непрерывна на отрезке [a ; b].
Если при этом f (х) ≥ 0 на [a ; b], то площадь S криволинейной трапеции, ограниченной линиями
,
выразится с помощью интеграла: (1)

Если же f (х) ≤ 0 на [a ; b], то −f (х) ≥ 0 на [a ; b].
Поэтому площадь S соответствующей криволинейной трапеции находится по формуле
или
(2)

Наконец, если линия у = f (х) пересекает ось Ох, то отрезок [a ; b] надо разбить на части, в пределах которых f (х) не меняет знака, и к каждой части применить ту из формул (1) или (2), которая ей соответствует.

10.Вычисление длины дуги плоской кривой.

Пусть известна функция и требуется найти длину дуги, заданной функцией , где .

Для определения длины дуги необходимо вычислить определенный интеграл:

Рассмотрим случай параметрического задания кривой:

где . В этом случае для определения длина дуги вычисляется определенный интеграл:

Рассмотрим случай, когда кривая задается в полярных координатах где . Тогда для определения длины дуги вычисляется следующий определенный интеграл:

11. Вычисление объема тела.

Пусть задано тело объемом V, причем имеется такая прямая (рис. 1), что, какую бы плоскость, перпендикулярную этой прямой, мы ни взяли, нам известна площадь S сечения тела этой плоскостью. Но плоскость, перпендикулярная оси Ох, пересекает ее в некоторой точке х. Следовательно, каждому числу х (из отрезка [а; b] см. рис. 1) поставлено в соответствие единственное число S (х) — площадь сечения тела этой плоскостью. Тем самым на отрезке [а; b] задана функция S (х). Если функция S непрерывна на отрезке [а; b] то справедлива формула

Полное доказательство этой формулы дается в курсах математического анализа, а здесь остановимся на наглядных соображениях, приводящих к ней.
Разобьем отрезок [а; b] на n отрезков равной длины точками x0 = a <x1 <x2 <... <xn-1 <b=хn, и пусть

Через каждую точку хk проведем плоскость, перпендикулярную оси Ох. Эти плоскости разрезают заданное тело на слои (рис. 2, а, б). Объем слоя, заключенного между плоскостями αk-1 и αk, при достаточно больших n приближенно равен площади S(xk-1) сечения, умноженной на «толщину слоя» Δx, и поэтому

Точность этого приближенного равенства тем выше, чем тоньше слои, на которые разрезано тело, т. е. чем больше n. Поэтому Vn →V при n → ∞. По определению интеграла
при n → ∞.

Наши рекомендации