Пропозициональные связки; образование формул КЛВ

К основным видам пропозициональных связок в классической логике высказываний могут быть отнесены: 1) конъюнкция (для её обозначения используют символы «Ù», «&», «×» ); 2) дизъюнкция (для обозначения её разновидностей используют символы «Ú», «Ú» ); 3) импликация (для обозначения её разновидностей используют символы «É», «®»); 4) эквиваленция (используемые для обозначения символы: «º», ««», «~»); 5) отрицание (используемые для обозначения символы: «Ø», «~»). В зависимости от того, «связывается» ли в новое высказывание одно либо несколько исходных высказываний, принято различать «унарные» и «бинарные» разновидности пропозициональных связок. К «унарной» разновидности в приведённом списке основных видов пропозициональных связок относя отрицание, остальные же связки трактуются как «бинарные».

V Пример

Когда мы из какого-либо исходного высказывания, могущего быть либо простым (например, a), либо сложным (например, (pÙq)Ér), при помощи унарной логической связки «отрицание» организуем новое сложное высказывание, то получим логические формы: (Øa) и (Ø(pÙq)Ér)), читающиеся: «Неверно, что а» и «Неверно, что если p и q, то r». В содержательном варианте это могут быть выражения: «Неверно, что сегодня пятница» и «Неверно, что если сегодня пятница и тринадцатое число, то все дела пойдут насмарку». Используемая же во втором из этих исходных высказываний логическая связка «конъюнкция» организует два исходных простых высказывания p и q в соответствующее сложное: (pÙq), а последнее затем увязывается «импликацией» с очередным простым высказыванием r, в результате чего организуется в целом формула (pÙq)Ér).

С учётом сказанного дадим определения каждой из основных пропозициональных связок.

1. Конъюнкция (от лат. conjunction — союз, связь) — это бинарная логическая связка, т. е. образующая из нескольких формул новую, более сложную формулу, в которой утверждается наличие одновременного положения дел в каждом отдельном суждении, соответствующем исходным формулам. Прототипами конъюнктивной связки в естественном языке являются союзы «и», «а», «но», «не только…, но и», «хотя», «да», «однако», «который», «зато» и т. п., которые употребляются для соединения различных частей речи. Формула сложного суждения, состоящего из двух суждений-конъюнктов, имеет вид (pÙq).

V Пример

Конъюнктивными суждениями являются высказывания:

— «На столе лежат книги и письменные принадлежности», состоящее из двух простых суждений, описывающих ситуации, которые могут в зависимости от конкретных обстоятельств либо одновременно несоответстветствовать, либо соответствовать действительности: p — «На столе лежат книги» и q — «На столе лежат письменные принадлежности». Логическая форма: (pÙq).

— «Солнце — звезда, а Луна — планета, но мы живём на Земле», состоящее из трёх простых суждений, в которых описывается ситуации, одновременно соответствующие реальному положению дел в нашей солнечной системе: p — «Солнце является звездой», q — «Луна является планетой» и r — «Мы есть живущие на Земле». Логическая форма: (pÙqÙr).

2. Дизъюнкция (от лат. disjunction — разобщение, различение) — это бинарная логическая связка, т. е. образующая из нескольких формул новую, в которой утверждается наличие по крайней мере одного из двух положений дел, утверждаемых отдельными суждениями, соответствующими исходным формулам. Прототипами дизъюнктивной связки в естественном языке являются союзы «или», «либо», «то ли…, то ли» и т. п. Поскольку члены дизъюнкции могут быть как не исключающими друг друга (не исключается возможность одновременного наличия выражаемого ими положения дел), так и исключающими друг друга (исключается возможность одновременного наличия выражаемого ими положения дел), то следует различать нестрогую (слабую) и строгую (сильную, альтернативную) дизъюнкции.

V Пример

Высказывание «Осадки могут выпадать в виде дождя или мокрого снега» является нестрогим дизъюнктивным суждением, состоящим из двух суждений-дизъюнктов, истинность одного из которых не исключает истинность другого (p — «Осадки могут выпадать в виде дождя», q — «Осадки могут выпадать в виде мокрого снега»); (pÚq) — формула данного высказывания. Высказывание «Всякое существо смертно или нетленно» является строгим дизъюнктивным суждением, состоящим из двух суждений-дизъюнктов, истинность одного из которых исключает истинность другого (p — «Всякое существо смертно», q — «Всякое существо нетленно»); (pÚq) — формула данного высказывания (черта под знаком дизъюнкции символизирует альтернативность).

3. Материальная (строгая) импликация (от лат. implicatio — сплетение, от implico — тесно связываю) — это бинарная логическая связка, образующая из двух формул А и В новую формулу (АÉВ), в которой утверждается, что при наличии положения дел в выражении А имеет место также и положение дел, описываемое в выражении В. Прототипами строгой импликативной связки в естественном языке являются союзы «если…, то», «если», «только если», «коль скоро…, то», «для… необходимо», «для… достаточно», «когда…, имеет место» и т. п. Имеющееся в формуле строгой импликации выражение А называется антецедентом (от лат. antecedens — предшествующий, предыдущий). Имеющееся в формуле материальной импликации выражение В называется консеквентом (от лат. consequens — следствие). В строгой импликации антецедент — это именно просто предшествующее суждение, не предполагающее обязательности смысла «являющееся обусловливающим». Если этот смысл присутствует и логически оформлен, мы имеем дело с релевантной (уместной) импликацией, где суждение А мыслится именно как обусловливающее, а суждение В именно как обусловленное; формуларелевантной импликации может быть записана следующим образом: p®q. Формула (p®q) означает: «Невозможно, чтобы А было истинно, а В было ложно». Классическая логика высказываний не использует релевантное имплицирование, что обусловливает наличие в этой теории парадоксов материальной импликации. Одним из примеров проявления таких парадоксов является закон Дунса Скота, который можно передать так: ложное высказывание влечёт (имплицирует) любое высказывание.

V Пример

Например, «Если человек разумен и вместе с тем неразумен, то все пончики выпекаются только из глины». В рамках классической логики высказываний такое импликативное суждение, записываемое формулой (pÚØp)Éq, квалифицируется как формально истинное.

4. Материальная (строгая) эквиваленция (от позднелат. aequivalens — равноценный, равнозначный) — это бинарная логическая связка, образующая из двух формул А и В новую формулу (АºВ), в которой утверждается, что положения дел, описанные в выражениях А и В, либо одновременно имеют место, либо одновременно отсутствуют. Прототипами эквиваленции как связки в естественном языке являются союзы «если и только если», «если…, то…, и наоборот», «тогда и только тогда, когда», «для… необходимо и достаточно», «если…, и…, если», «в том и только в том случае, когда» и т. п. Строгими эквивалентными являются сложные высказывания «p, если и только если q», образованные из высказываний p и q и разлагающиеся на две импликации: «если p, то q» и «если q, то p» (отсюда встречающееся название — «двойная импликация»).

V Пример

Треугольник является равносторонним, если и только если он является треугольником.

5. Отрицание — это унарная логическая связка, образующая из формулы А новую формулу ØА, в которой утверждается отсутствие положения дел, описываемого в выражении А. Прототипом отрицания как связки в естественном языке является выражение «неверно, что» и его аналоги.

V Пример

Неверно, что некоторые планеты солнечной системы не вращаются вокруг Солнца (Øp). Неверно, что наш мир существует и не существует (Ø(pÙØp)) и т. п.

При этом будем иметь в виду, что формула классической логики высказываний — это любое правильно построенное выражение языка этой логической теории, т. е. выражение правильно фиксирующее логическую форму сложного высказывания. Формулой классической логики высказываний является всякая пропозициональная переменная p («элементарная формула»), а также логические единства пропозициональных переменных и пропозициональных связок (сложная формула): pÙq, pÚq, pÉq, pº q, Ø p, Ø(pÙq) и т. п. Формула, входящая в состав некоторой формулы, называется её подформулой, равно как и сама исходная формула.

Наши рекомендации