ЗНАЧЕНИЕ мкÒ ДЛЯ ОКР СРЕДЫ 1 страница

Хламидии - Chlamydia.

Хламидии имеют много общего с рикеттсиями, но они передаются непосредственно от хозяина хозяину воздушно- капельным или половым путем. Гр-. Обитают на слизистых оболочках, их можно отнести к нормальной микрофлоре если они находятся в небольшом количестве. Помимо человека, они вызывают заболевания у птиц - орнитоз, пситаккоз. Геном маленький. Облигатные внутриклеточные паразиты, вне клетки хозяина не размножаются. Культивируются как рикеттсии. Метаболически зависимы от клетки - хозяина. Внутри клетки хозяина образуют 2 формы: Элементарное тельце - очень мелкие клетки, похожие на покоящиеся формы рикеттсий. Инфекционны. Проникают в клетку-хозяина, где из этой формы образуются ретикулярные тельца, которые внутри клетки хозяина бинарно делятся, затем снова переходят в элементарные тельца. Скопления телец внутри клетки-хозяина - это внутриклеточные включения, их обнаруживают иммунно-люминесцентной микроскопией, окраской по Романовскому-Гимзе. Заболевание, вызываемое хламидиями – хламидиоз - воспалительные процессы слизистых. Новорожденные могут заражаться при прохождении через родовые пути матери. У них часто возникают конъюктивиты.

15. Морфологическая характеристика грибов.

Грибы (Myces) относятся к эукариотам. Грибов в природе огромное количество и только небольшая их часть вызывает заболевания животных и человека. Основной структурный элемент грибов – гифы - нитевидные структуры, переплетающиеся между собой. В результате переплетения гиф образуется мицелий. Грибы в лабораторных условиях культивируются на специальных питательных средах, где образуют мицелий как поверхностный(воздушный), так и субстратный.

Грибы размножаются спорами бесполым путем. Высшие грибы размножаются половым путем: 2 споры сливаются, образуя зиготу. По образованию спор грибы делятся на низшие и высшие. У низших грибов помимо особенности спорообразования мицелий одноклеточный несегментированный. У высших грибов мицелий делится перегородками на отдельные клетки. В перегородках находятся отверстия.

У низших грибов споры образуются в специальных закрытых спорангиях. Споры, закрытые оболочкой спорангия, называются эндоспорами. У высших грибов экзоспоры- соприкасаются с внешней средой.

Артроспоры - гиф мицелия начинает дробиться и каждый образующийся при этом фрагмент дает начало новому мицелию.

Хламидоспоры - на концах в местах сочленения мицелия образуются выпуклости, одна из которых утолщается и превращается в спору.

Бластоспоры - характерны для дрожжевого грибка. От материнской клетки отпочковываются дочерние.

Аскоспоры - это половые споры, не образующие мицелий.

Классы грибов:

- Овомицеты.

- Аскомицеты (сумчатые).

- Базидиомицеты.

- Несовершенные грибы или дейтеромицеты.

Патогенность грибов.

Грибы у человека способны вызывать микозы, как поверхностные (поражения кожи, ногтей, волос), так и глубокие (мышцы, клетчатка). Грибы могут вызывать системные поражения. Криптокиккоз - заболевания, вызываемые грибком на фоне ВИЧ-инфекции (в 30% случаев). Заболевание вызывает Cryptococcus. Он имеет дрожжеподобные клетки размером 4- 20 мкм. Образует бластоспоры. Нитчатые формы отсутствуют. Может образовывать капсулу.

Blastomyces вызывает бластомикоз. Встречается в двух формах - висцеральный и кожный. В тканях определяются довольно крупные дрожжеподобные клетки.

Candida - входит в состав нормальной микрофлоры. У маленьких детей часто наблюдается кандидоз полости рта - молочница. Активизируются на фоне иммунодефицита.

Hystoplasma - Гистоплазма - вызывает гистоплазмоз. В клетках, тканях образует одноклеточные образования округлой или грушевидной формы. Образует бласто- и хламидоспоры. На питательных средах дает воздушный мицелий.

Coccidioides вызывают системное заболевание кокцидиоз, острая форма напоминает грипп. При хронической форме поражается костная ткань. Образует эндоспоры. На питательных средах образует воздушный мицелий. Часто встречается на фоне ВИЧ-инфекции.

16. Морфологическая характеристика актиномицетов.

Actinomyces - Актиномицеты - Лучистые грибы. Неистинные грибы. Относятся к почвенным бактериям. При своем росте образуют структуры, напоминающие мицелий грибов, т.е. они являются промежуточной формой микроорганизмов. С грибами их роднит мицелиообразование и спорообразования (бласто- , артро- и хламидоспоры). С бактериями - обитают в почве, Гр+, видны под световым микроскопом с иммерсией. Имеют ядерный материал, ЦПМ, клеточную стенку. Делятся обычным делением и спорами. На питательных средах образуют нечто похожее на субстратный мицелий. Выделяют 3 группы:

1) Псевдоактиномицеты - некоторые бактериальные формы, например микобактерии туберкулеза, бифидобактерии. Для этой группы характерна удлиненная форма и специфическое деление.

2) Проактиномицеты. У этих микроорганизмов сохраняется мицелий, образуют артроспоры. К ним относятся Nocardia- вызывают нокардиоз.

3) Эуактиномицеты - истинные лучистые грибки. Представитель - род Sthreptomyces. Образуют истинный мицелий, артроспоры. Могут образовывать спорангии (стрептоспорангии), экзоспоры по типу высших грибов. Эта группа дает до 95% антибиотиков.

17. Морфологическая характеристика простейших.

Простейшие (Protea) – одноклеточные живые существа. Морфологически их делят на: амебовидные, инфузории,

18. Химический состав бактерий. Пептидогликан, тейхоевые кислоты, липополисахарид – структура, механизмы биологического действия.

Микроорганизмы по своему химическому составу похожи на другие живые формы. 75-80% содержания воды. Белки, жиры, углеводы, нуклеиновые кислоты.

Белки входят в состав бактерий в виде простых, сложных, комплексных соединений, в состав липопротеидов. Белки выполняют роль ферментов. Различают структурные белки и ферменты.

Жгутики. В их состав входят белки- флаггелин- полимерное белковое соединение. Он состоит из отдельных компонентов линейной молекулярной формы, скрученных в виде канатов. Белок, входящий в состав жгутиков, обладает выраженными антигенными свойствами. На этот антиген жгутиков в макроорганизме вырабатывабтся антитела и сенсибилизированные лимфоциты.

Пили состоят из белка пилина. Этот белок обладает антигенными свойствами, но у многих микроорганизмов он гомологичен по аминокислотному составу.

Наружная мембрана Гр+ и Гр- бактерий содержит чистые белки или их комплексные соединения. Например, золотистый стафилококк имеет чистый белок- белок А. Этот белок располагается на наружной мембране и может связываться с молекулой IgG. У стрептококков имеется белок М. Этот белок может связываться с молекулой иммуноглобулина G, у стрептококков выполняет функцию адгезина с помощью которого стрептококки связываются с мембраной клеток. Чистый белок входит в состав капсулы некоторых микроорганизмов.

Полипептидная капсула имеется у возбудителя сибирской язвы.

Клеточная стенка – у Гр+ и Гр- микробов. Белок входит в состав пептидогликана. У Гр+ бактерий пептидогликан расположен в несколько слоев. Пептидогликан в природе имеется только в составе бактерий и является самым мощным раздражителем иммунной системы макроорганизма. Для бактерий он обеспечивает механическую устойчивость, выполняет роль каркаса. Пептидогликан обладает рядом биологических активностей:

- Является довольно сильным антигеном.

- Обладает пирогенными свойствами, т.е. вызывает лихорадочное состояние.

- Вызывает воспалительные реакции в сосудах кишечника.

- Адъювантные свойства - усиление иммунного ответа.

Белки встречаются также в составе ЦПМ. Она имеет 2 белковых слоя- наружный и внутренний, между которыми- слой липидов. Цитоплазма, рибосомальные белки отличаются от белков эукариотических клеток константой седиментации- скоростью осаждения в ультра- центрифуге. У бактерий она составляет 70S и 80S у эукариот. Действие ряда антибиотиков блокируют синтез белка рибосомами бактерий.

Ядерный материал белка не имеет. У микроорганизмов имеются особые белки, которые способны связывать атомы железа. Эти белки- сидерофоры или аэробактин. Эти белки усиливают патогенные свойства микроорганизмов. Вдоль каналов бактериальных клеток, по которым проходят питательные вещества, содержатся белок, имеющий большое значение в обмене веществ- порин.

Липиды микроорганизмов.

- Способны к ориентации

- Способны к агрегации

- Играют большую роль в обменных процессах.

- Состоят из жирных кислот, в основном насыщенных- С15-С18. У Гр- микробов- С16- С18. Часть жирных кислот обладает выраженными патогенными свойствами- миколовая, фтионовая. По спектру летучих жирных кислот часто проводят идентификацию микроорганизмов.

Углеводы. У микроорганизмов встречаются редкие углеводы, характерные только для них- маннитол, эритритол. Углеводы имеются в составе капсулы. Особенно много полисахаридов в клеточной стенке у Гр+.

Углеводы и липиды у Гр- бактерий образуют сложный комплекс - ЛПС-липополисахарид. Он состоит из 3 структурных компонентов:

1- Липид А.

2- Сердцевинный полисахарид.

3- О-боковая цепь.

ЛПС обладает свойствами эндотоксина, выраженными антигенными свойствами(О- антиген). Липид А обеспечивает токсические свойства полисахарида, и если из состава ЛПС удалить липид А его токсические свойства теряются. Сердцевинный полисахарид обладает антигенными и иммунномоделирующими свойствами. О- боковая цепь является специфическим свойством. В зависимости от ее строения проводится серологическое типирование бактерий. Она состоит из различных углеводов, сахаров(галактоза, глюкоза, манноза), специфичных только для бактерий сахаров: абеквоза, паратоза, политоза.

ЛПС оказывает следующие воздействия на организм:

1) обладает пирогенным действием Þ вызывает лихорадку

2) вызывает гемодинамические расстройства и нарушения ССС, резко уменьшает АД

3) вызывает агглютинацию ФЭ крови Þ тромбоз

4) вызывает диарейные состояния

5) является митогеном и стимулирует В-лимфоциты

6) обладает АГ свойствами

7) стимулирует образование цитокинов, а они в свою очередь действуют на др системы МКÒ, может даже вызвать шоковое состояние

вызывает ЭНДОТОКСИНОВЫЙ ШОК

ЛПС может вызывать лейкоцитоз, обладает протекторными свойствами – сдерживает рост и размножение раковых ##, ↓ чувствительность ## МКÒ к ИО.

Бактерии, имеющие полный состав ЛПС, образуют S-колонии. Эти колонии имеют ровные края, гладкую поверхность, более выраженные патогенные свойства. Бактерии с нарушенным синтезом ЛПС (отсутствует О-боковая цепь и часть сердцевинного полисахарида) образуют R-колонии: неровный край, шероховатая поверхность, сниженные патогенные свойства. Для выделения ЛПС из микробной клетки используется:

- Трихлоруксусная кислота.

- Водно-фенольная экстракция.

В чистом виде ЛПС выпускается промышленностью, используется как иммунностимулятор, в основном используется его полисахаридная часть без липида А. В зависимости от концентрации липополисахарида он вызывает в организме:

- Пирогенные эффекты.

- Гемодинамические расстройства со стороны ССС.

- Коагуляцию клеточных элементов крови, плазмы, в результате чего образубтся тромбы.

- Диарею.

- Митогенные свойства, стимулирует образование В- лимфоцитов.

- Антигенные свойства.

- Адъювантные свойства.

- Соногенные свойства.

Очень большое значение имеет эндотоксиновый шок. ЛПС может задерживать рост раковых клеток. Способствует снижению чувствительности макрооранизма к радиоактивному излучению.

19. Ферменты бактерий. Основные классы, генетический контроль, классификация, характеристика ферментов вирулентности.

Ферменты участвуют во всех обменных процессах. Ферменты делятся на экзоферменты, которые выделяются в окружающую среду, где они расщепляют питательные вещества. Эти вещества поступают внутрь клетки, где расщепляются эндоферментами.

По постоянству действия:

- Ферменты, постоянно участвующие в обменных процессах - конституитивные. Они принимают активное участие в синтезе структурных компонентов.

- Ферменты, действующие только при наличии субстрата – адаптационные: ферменты транспорта и катаболизма лактозы – галактоздпермиаза, b-галактозидаза, галактозидацетилтрансфераза.

В целях диагностики определяют такие ферменты моргов: лецитиназа, уреаза, сахараза, мальтаза, гиалуронидаза,

Ферменты патогенности:

1) гиалуронидаза – расщепляет ГАГ (матрикс соедин. ткани), что облегчает механическое продвижение по ткани

2) уреаза – расщепляет мочевину с образованием аммиака, что помогает выжить в очень кислой среде

3) гемагглютинины – запускают агглютинацию крови, что создает благоприятные условия для роста и размножения моргов.

4) лецитиназа – расщепляет желток куриного яйца

5) пенициллаза – расщепляет пенициллин (первый антибиотик)

20. Метаболизм микроорганизмов. Механизмы поступления веществ. Классификация и состав питательных сред.

Микроорганизмы используют питательные вещества для построение компонентов бактериальной стенки и для получения энергии. По характеру захвата пищи бактерии относятся к ОСМОФИЛАМ, т.е. питаются веществами, растворёнными в воде. Как и др мкÒ они нуждаются в большом кол-ве минеральных в-в (С, О, N, S, Р, Са, Fe и др).

Основным источником углерода для б! могут служить неорг соед-я (чаще СО2), из которых мкÒ синтезирует орг в-ва – это АУТО- или ФОТОТРОФЫ (синегнойная палочка). Если же мкÒ нуждаются в орг соед-ях, к/е служат им источником углерода и азота, то их наз. ХЕМО- или ГЕТЕРОТРОФАМИ. В результате ассимиляции и окисления орг в-в (из прир соед-й чаще всего исп-ся полисахариды – крахмал, целлюлоза), выделяется азот.

Помимо этих в-в, мкÒ необходимы доп в-ва – факторы роста, к ним относится большое кол-во АК, пуриновые и пиримидиновые основания, витамины. Они входят в состав микробной #, но синтезировать их самостоятельно они не могут, поэтому факторы роста обязательно должны присутствовать в пит среде у некоторых б!!. Если мкÒ нуждаются в факторах роста – АУКСОТРОФЫ, если нет – ПРОТОТРОФЫ.

Источником N и S для мкÒ служат сульфаты, нитраты, карбонаты и др, к/е восстанавливаются до H2S и N2. Самый распространённый источник N –аммонийные соли (восстанавливаются до N2); т/же АК. Источником S явл H2S (в прир усл из него восст-ся S с участием Beggiatoa) и АК, содержащие S.

Осн преградой на пути пит в-в явл # мбна. Ч/з неё могут переноситься только те в-ва, для к/х есть спец транспортная система. Существует несколько типов транспорта веществ:

ПРОСТ ДИФФУЗИЯ – неспецифич проникновение в-в в #, зависит от размеров и липофильности молеклы.

ОБЛЕГЧЁННАЯ ДИФ-Я – по градиенту конц (без затрат эн) с помощью ферментов СУБСТРАТСПЕЦИФИЧНЫХ ПЕРМЕАЗ или ТРАНСЛОКАЗ.

АКТИВНЫЙ ТРАНСПОРТ – с затратой энергии и при участии спец ферментов, против градиента конц.

ТРАНСЛОКАЦИЯ ГРУПП – происходит перенос и трансформация молекулы: глюкоза → глюкозо-6-фосфат.

КЛСФ ПИТАТЕЛЬНЫХ СРЕД:

По консистенции:

Жидкие (МПБ, желчный и сахарный бульоны, пептонная вода …)

Полужидкие (полужидкий агар…)

Плотные (МПА, свёрнутая сыворотка крови …)

Сухие (Левина, Плоскирева…)

По происхождению:

Искусственные: а) животные (МПА, МПБ, МПЖ)

б) растительные (настои сена, отвары злаков, дрожжей, фруктов…)

Естественные: а) животные (кровь, сыворотка, жёлчь)

б) растительные (кусочки овощей или фруктов)

По составу:

Простые (МПА, МПБ)

Сложные (кровяные, сахарные, сывороточные питательные среды…)

По назначению:

Среды консервирования (для первичного посева и транспортировки) – предупреждают отмирание патогенов и подавляют рост сапрофитов: гипертонический р-р, глицериновая смесь…

Среды обогащения – для накопления опред группы бактерий за счёт создания условий, оптимальных для одних и неблаг для др видов: селенитовая среда, пептонная щелочная вода, солевой и жёлчный бульоны…)

Элективные, селективные среды – для отдельных видов, готовятся с учётом биохимических и энергетических потребностей мкÒ. Выделяют кровяные и сывороточные (Борде–Жангу), яичные (Левенштайна–Йенсена, ЖСА…) и др. среды (ЖСА, УКА, Эндо, Плоскирева…).

Дифференциально-диагностические среды – для изучения и идентификации отдельных групп, видов, типов б!! В основе различные в-ва, при расщеплении к/х происходит сдвиг рН в кислую (углеводы, спирты, липиды) или щелочную (белки, мочевина…) сторону. В них часто вносят индикаторы → визуально оценить изменение рН. Напр, сдвиг в КИСЛУЮ сторону вызывает покраснение индикатора Андреде (в основе фуксин) или пожелтение при использовании бромтимолового синего, а при сдвиге в ЩЕЛОЧНУЮ сторону они не меняют окраски.

Для выделения чистых культур применяют оптимальные питательные среды с фиксированным рН. Большинство б! способны расти на разл пит средах, за исключением хламидий и риккетсий, к/е не растут вне ##.

Дифференциально-диагностические среды используются для изучения и идентификации отдельных групп, видов, типов б!!. В их основе различные органические и неорг в-ва, при их расщеплении происходит сдвиг рН в кислую (углеводы, спирты, липиды) или щелочную (белки, мочевина…) сторону. В эти среды часто вносят разл индикаторы, позволяющих визуально оценить изменение рН. Напр, сдвиг в КИСЛУЮ сторону вызывает покраснение индикатора Андреде (в основе фуксин) или пожелтение при использовании бромтимолового синего, а при сдвиге в ЩЕЛОЧНУЮ сторону они не меняют окраски.

Дифф.-диагн. среды Эндо, Левина, Плоскирева прм для диагностики кишечных заболеваний (шигеллёзов, сальмонеллёзов). Готовятся они в чашках Петри, в основе МПА + лактоза (ферментируется только E.coli, но не патогенными мкÒ) + индикатор.

ЭНДО. Индикатор по типу индикатора Андреде, лучше держать в тёмном месте. Растущая колония E.coli вырабатывает конечные продукты → окраска красная, часто с металлическим блеском; Shigella и Salmonella → бесцветные колонии.

ЛЕВИНА. Индикатор - эозин-метилениовая синь, при рН ³ 7 имеет цвет эозина (розовый), в кислой среде – восстанавливается метиленовый синий (цвет тёмно-синий). Колнии E.coli → окраска тёмно-синяя, Shigella и Salmonella → бесцветные колонии (под цвет среды).

ПЛОСКИРЕВА. Индикатор – нейтральный красный; рН=7 бесцветный (патогенный б!), рН<7 розово-красный (E.coli). И ещё присутствуют 2 добавки: бриллиантовый зелёный и соли жёлчных кислот. На т/й среде угнетается рост воздушной мкФ, к тому же на ней не растут многие (но не все) штаммы E.coli.

РЕССЕЛЯ. Эта среда комбинированная, готовится в пробирке, половина –скошенная часть, другая – столбик. В среду входят МПА (среда полужидкая), лактоза (1%), глюкоза (0,1%), индикаторы (розоловая к-та и водно-голубой). При рН=7 среда окрашивается в розовый цвет (за счёт розоловой к-ты), рН<7 – в синий. Иногда добавляют бром-тимоловый синий, рН=7 – сине-зеленовытый, рН<7 – бесцветный. Рассев производят по поверхности скошенной части и уколом в глубину столбика. E.coli → среда обсцвечивается и появляются пузыри газа, Shigella и Salmonella → цв изм-ся только в столбике, а скошенная часть останется без изменений, т.к. наилучшие условия для ферментации глюкозы – анаэробные, наиболее активно она будет распадаться в столбике, образуя кисл продукты, газа не будет. У Salmonella paratyphi → то же плюс газ.

Также с дифф-диагн. целью используют другие ферментативные свойства. Напр, «пёстрый» (цветной) РЯД ГИССА – пептонная вода и различные углеводы + индикатор (Андреде = кислый фуксин + щёлочь) и стеклянный поплавок для улавливания газа. Из углеводов наиболее часто применяют моносахариды (глюкоза, ксилоза, арабиноза, фруктоза, манноза, галактоза), дисахариды (сахароза, мальтоза, лактоза), полисахариды (крахмал, гликоген, инулин, декстрин) и гликозиды. Среды засевают, и если мкÒ имеет соответствующий фермент, то образуются кислоты, они восстанавливают фуксин и среда приобретает красный цвет. Если при окислении углеводов выделяется СО2, то он скапливается в поплавке. Белки расщепляются протеолитическими ферментами до АК, а они в свою очередь распадаются до простых соед-й (СО2, NН3 и др). На практике для определения этих ферментов опред-ют индол (+щавелевая кислота → краснеет) и сероводород (H2S) (+ уксусно-кислый Pb → чернеет).

Также определяют наличие плазмокоагулазы (по свёртыванию плазмы крови), гиалуронидазы (по р-рению сгустка гиалуроновой кислоты в пробирке в жидкой среде), лецитиназы (лецитин входит в состав # стенок, при добавлении в среду и его разрушении – ЖСА – скапливаются продукты обмена Þ помутнение; этот фермент есть у Staphylococcus aureus, а у St. epidermidis – нет).

21. Типы дыхания микроорганизмов. Методы создания анаэробных условий для культивирования. Основные принципы культивирования.

В процессе обмена в-в мкÒ постоянно нуждаются в притоке энергии. Она освобождается при ок-ии пит в-в и в виде АТФ исп-ся клеткой. Сущность ок-я закл-ся в переносе электронов и протонов от донора к акцептору. У мкÒ чаще происходит отщепление 2 атомов Н (дегидрирование) от акцептора при участии ДГ. Биол ок-е может проходить как при участии О2, так и без него. По отношению к О2 выделяют следующие группы мкÒ:

1) ОБЛИГАТНЫЕ АЭРОБЫ. Способны плч энергию путём дыхания. Причём обязательно нуждаются в О2, который используют в качестве конечного акцептора водорода.

2) ОБЛИГАТНЫЕ АНАЭРОБЫ. Процессы биол ок-я протекают у них по типу брожения, а расти и размножаться они могут только в бескислородных условиях, в присутствии О2 гибнут. Конечным акцептором водорода являются орг соед-я – чаще всего восстанавливается ПВК.

3) ФАКУЛЬТАТИВНЫЕ АНАЭРОБЫ. Могут расти и размножаться и в присутствии и в отсутствии О2, т.к. их ферментная система способна переключаться с одного типа дыхания на другой.

4) МИКРОАЭРОФИЛЫ. Лучше растут при низком содержании О2 и повышенном СО2 («капнофильные мкÒ»).

5) АЭРОТОЛЕРАНТНЫЕ. Могут выживать в присутствии атмосферного кислорода, но не могут использовать его в качестве конечного акцептора водорода (например, молочнокислые бактерии – бродильный метаболизм).

Т.о, факультативные анаэробы выращивают при пониженном содержании кислорода, облигатные – при полном его отсутствии, что достигается путем посева материалов внутрь жидкой или полутвердой питательной среды.

Условия культивирования. Наиболее пригодной для выращивания бактерий–анаэробов является среда Китта–Тароцци (среда обогащения), состоящая из концентрированного МПБ, глюкозы и агара. На дно пробирки для адсорбции кислорода помещают кусочки вареной печени или фарша слоем 1,0–1,5 см и заливают 6–7 мл среды. Перед посевом среду кипятят 10–15 мин для удаления воздуха, затем быстро охлаждают, а после посева заливают стерильным вазелиновым маслом. Материал, содержащий спороносные анаэробы, высевают в две пробирки со средой Китта–Тароцци, одну из них прогревают 30 мин при температуре 80°С для уничтожения вегетативных форм сопутствующей микрофлоры.

Посевы на поверхности плотных сред, разлитых в чашки Петри, культивируют в макро– или микроанаэростате.

Макроанаэростат представляет собой двухстенный аппарат с крышкой. Между стенками аппарата находится вода, источником тепла служит электричество, терморегулятор обеспечивает постоянную температуру. Посевы помещают в анаэростат после того, как температура в нем будет доведена до 37°С, и герметически закрывают крышкой. Анаэростат соединяют с вакуум–насосом и, выкачивая воздух, создают вакуум 3–5 мм. Посевы инкубируют в анаэростате обычно в течение 48 ч. Имеются также портативные анаэростаты. Это небольшие металлические цилиндры с герметически закрывающейся крышкой, постоянная температура в которых создается при помещении их в термостат.

Особенности выделения бактерий–анаэробов. В первый день исследуемый материал микроскопируют и высевают в среду Китта–Тароцци градуированной или пастеровской пипеткой, прогревают при температуре 80°С в течение 30 мин, заливают вазелиновым маслом и посевы помещают в термостат. На второй день помутневшую (нередко вспенившуюся) среду обогащения набирают пастеровской пипеткой, которую опускают через слой вазелинового масла до дна пробирки.

Выделенную культуру микроскопируют и пересевают на плотные питательные среды. Изолированные колонии получают последовательным засевом шпателем бульонной культуры в три чашки Петри с кровяно–сахарным агаром. Чашки Петри помещают в анаэростат при температуре 37°С на 24–48 ч или культуру засевают в столбики расплавленных и остуженных сахарных агаров после предварительного разведения в изотоническом растворе натрия хлорида. На третьи сутки изучают выросшие на чашках Петри колонии (или извлекают колонии из столбиков агара), делают из них мазки, высевают на среду Китта–Тароцци для обогащения чистой культуры.

Чтобы установить видовую принадлежность выделенной культуры бактерий, кроме изучения морфологических, тинкториальных и культуральных особенностей, необходимо определить на ряде Гисса их ферментативные свойства.

Т.о, используют следующие методы получения анаэробных условий:

- ФИЗИЧЕСКИЙ (анаэростат)

- ХИМИЧЕСКИЙ (оксикатор, сорбент – пирогаллол)

- БИОЛОГИЧЕСКИЙ

- Метод ФОРТНЕРА – чашку петри пополам, заливают парафином

- Метод ЧАСОВЫХ СТЁКОЛ – выпуклое засевают аэробами.

- с использованием спец. пит. сред

- уколом в среду ВИЛЬСОН–БЛЕРА (колонии чёрные)

- в стеклянной трубке.

22. Рост и размножение микроорганизмов. Периодические и непрерывные культуры.

Рост клеток – координированное воспроизведение всех клеточных компонентов и структур, ведущее в конечном итоге к увеличению массы клетки.

Размножение клеток – увеличение числа клеток. Происходит либо путем поперечного деления, возникающего в процессе роста, либо, что встречается реже, почкованием, либо путем образования спор. Большинство прокариотов (в т.ч. спирохеты и риккетсии) размножается поперечным делением. Актиномицетфы размножаются путем фрагментации нитевидных клеток с образованием палочковидных и кокковидных клеток. Представители сем. Streptomycetaceae образуют воздушные гифы, от которых отшнуровываются споры, служащие для размножения. Хламидии проходят при размножении определенный цикл (элементарные и ретикулиновые тельца), чем отличаются от других прокариотов.

23. Классификация, структура и особенности биологии вирусов.

В! – не облад собственным обменом в-в Þ нуждается в живой #. Причём, чем моложе # и чем интенсивнее протекают в ней обменные процессы, тем лучше и быстрее репродуцируется В! (эмбриональные, раковые ##).

Классификация и морфология:

в зависимости от #-хозяина: р!, ж!, б!, чка.

от локализации в # : в цтпл, в яд.

от типа НК: ДНК– и РНК–овые.

от строения: простые, сложные

ПРОСТЫЕ В! состоят из НК, покрытой белковой оболочкой (КАПСИД), к/я защищает НК от разл воздействий. Она состоит из отдельных субъединиц (КАПСОМЕРОВ), их кол-во разл у разн В!!.

СЛОЖНЫЕ – т/же им НК, капсид, СУПЕРКАПСИДНАЯ ОБОЛОЧКА, в состав которой кроме белка входят липиды и углеводы. У нек сложных в!! на поверхности есть выросты – нейраминидазы и гемагглютинины (вирус гриппа).

Особенность биологии вирусов: это облигатные внутриклеточные паразиты.

24. Основные этапы и исходы взаимодействия вируса с клеткой хозяина.

Взаимодействие с # хозяина:

АДСОРБЦИЯ в! на поверхности #. Она м.б. обратимой и необратимой. При приближении в! к #, происходит взаимодействие его специфических рецепторов с комплементарными структурами #. Если взаимодействие по типу хим реакции – НЕОБРАТИМОЕ, если слабое взд – ОБРАТИМОЕ.

ПРОНИКНОВЕНИЕ в! в #. Некоторые в!! (бактериофаги) вводят только НК, другие – полностью проникают в # со всеми своими оболочками.

«РАЗДЕВАНИЕ». Собственные ферменты #, принимая в! за чужеродное в-во, начинают расщеплять оболочки, помогая ему освободить свою НК.

НК в! БЛОКИРУЕТ ГЕНОМ # ХОЗЯИНА, выключает его из работы и берёт управление всеми БХ процессами под свой контроль. # перестаёт выполнять свою работу и начинает производить новые в! частицы, причём на рибосомах синтезируются капсомеры, в ядре (или цтпл) ген материал.

САМОСБОРКА ВИРУСА.

ВЫХОД В!. Если вирус простой, то покидает # взрывоподобно, все в! частицы выходят одновременно, а # ЛИЗИРУЕТСЯ. Если сложный – то выходит плавно, отпочковываясь, достраивая при этом суперкапсид. # не погибает, какое-то время она сохраняет свою жизнеспособность, но в полной мере выполнять свои функции уже не может. Т/е больные клетки округляются, сливаются в многоядерный синцитий…

Наши рекомендации