Краткий исторический очерк

Существенный вклад в решение этой проблемы внесли выдающиеся ученые Галилео Галилей и Роберт Гук. Ими была впервые правильно сформулирована данная задача, но решение ее осталось за пределами возможностей XVII века.

Наука о сопротивлении материалов, очевидно, возникла тогда, когда у человека появилась потребность в создании сложных сооружений, постройке больших морских судов.

Точно назвать такую дату нельзя. Первые сооружения - египетские пирамиды Хеопса высотой 145 метров были построены 1000 лет до новой эры. Мы не перестаем удивляться мастерству древних строителей, воздвигших прекрасные акведуки в Древнем Риме, дворцы в Византии, храмы в Древней Руси, культовые сооружения Востока.

К сожалению, до наших дней дошли только те сооружения, в которых строители удачно и без ошибок скопировали природу. Как правило, в таких сооружениях действовали только сжимающие напряжения. И если в сооружения прокрадывались растягивающие деформации, то, вероятно, последствия были печальны.

Первым ученым, применившем расчет в кораблестроении, был Леонардо да Винчи. Интересная запись в его трудах: «Арка есть сила, созданная двумя слабостями» (две неустойчивых половинки).

Галилео Галилей – второй крупный ученый эпохи Возрождения в трактате «Рассуждения и математические доказательства» писал: «Мы даем здесь основание учения совершенно нового о предмете столь же древнем, как мир».

Г. Галилей первым в истории науки применил расчеты балок, исходя из их несущей способности. Работы Г. Галилея положили начало становлению науки о прочности материалов.

В 1660 году Роберт Гук пришел к выводу о существовании пропорциональной зависимости между напряжениями и деформациями. Проверял этот закон он 18 лет.

Еще в XIX веке инженеры практики делали расчеты, как говорят, на пальцах. При пропорциональном увеличении размеров парусного судна оно разрушалось. Несколько позже частыми стали аварии пароходов. В Англии с 1882 по 1885 год потерпели аварию 228 пароходов. В США за 12 лет с 1876 года обрушился 251 мост.

Эти и многие другие примеры убедили инженеров в пользе обоснованных расчетов. При этом обнаружилось, что правильный расчет может и удешевить конструкцию, так как позволяет экономить материал.

Важный вклад в науку о прочности материалов сделал в середине XVIII века петербургский академик Леонард Эйлер, написавший в общей сложности более 800 работ по различным теоретическим и прикладным проблемам.

Первый учебник по «Сопротивлению материалов» был издан во Франции в 1826 году. Автор Навье.

В конце XVIII века французский ученый Кулон разработал важную в то время теорию сводов. Будучи прекрасным экспериментатором, он решил некоторые задачи в области кручения.

Всему миру известны труды выдающихся ученых Власова В.З., Тимошенко С.П., Крылова А.Н. и Келдыша М.В., решивших сложные и актуальные задачи в области строительства, самолетостроения, авиастроения и кораблестроения.

Изучением поведения элементов конструкций в экстремальных условиях занимался наш украинский соотечественник Писаренко Г.С.

Задачи и методы «Сопротивления материалов»

Все твердые тела обладают свойствами прочности и жесткости. Балка является прочной и жесткой, так как способна выдерживать приложенную к ней нагрузку, имея при этом очень малые деформации. Ветка дерева является прочной, но не жесткой, так под действием ветра изгибается, но не ломается.

В отличие от теоретической механики, где тела рассматриваются абсолютно твердыми, в сопротивлении материалов существенным является свойство упругости тел. Подводная лодка на расчетной глубине вследствие деформируемости стального корпуса уменьшает свой объем на 2%. При этом уменьшается ее объем и выталкивающая сила воды. Если вес лодки с балластом не изменяется, то она по мере погружения стремится провалится глубже. Так как вследствие сжатия ее объем уменьшается. Следовательно, не учет упругих свойств материала может привести к негативным последствиям.

Методами сопротивления материалов ведутся практические расчеты и определяются необходимые размеры элементов строительных конструкций и деталей машин на прочность, жесткость и устойчивость.

Расчет на прочность позволяет определять поперечные размеры элементов конструкций.

Расчет на жесткость позволяет находить деформации элементов при нагружении и определять такие их поперечные размеры, при которых деформации не превышают заданных величин.

Расчет на устойчивость дает возможность предотвратить потерю равновесия первоначальной прямолинейной формы элемента.

Основные понятия и гипотезы

Реальные тела при нагружении деформируются, т. е. меняют свою форму и размеры. При деформации точки тела перемещаются в произвольном направлении относительно первоначального положения.

Так при растяжении эспандера его нити удлиняются, тонкая линейка при изгибе искривляется, пружина при сжатии укорачивается. В этих случаях говорят, что происходит деформация элемента.

Деформация – изменение взаимного расположения частиц тела, приводящее к изменению его размеров и формы.

Обратимые деформации являются упругими. Упругость - свойство материала восстанавливать свою первоначальную форму.

Необратимые деформации являются пластическими. Пластичность - свойство материала накапливать остаточные деформации.

Текучесть – процесс быстрого нарастания пластических деформаций без увеличения нагрузки.

Ползучесть - процесс постепенного нарастания пластических деформаций без увеличения нагрузки.

По своим физическим свойствам материалы бывают изотропными и анизотропными.

Изотропные материалы - такие, у которых свойства во всех направлениях одинаковы. К таким материалам можно отнести различные металлы и их сплавы.

Анизотропные материалы - такие, у которых свойства в различных направлениях неодинаковы. К таким материалам относится дерево, у которого свойства вдоль и поперек волокон неодинаковы, армированные пластики и т. д.

Излагаемый в курсе «Сопротивление материалов» теоретический материал основан на ряде гипотез, базирующихся на экспериментальных и натурных измерениях. Основными гипотезами являются следующие.

Гипотеза о сплошности материала. Полагают, что материал полностью заполняет объем тела. Теория о дискретности строения материала во внимание не принимается.

Гипотеза об однородности и изотропности материала. Материал предполагается однородным и изотропным.

Гипотеза о малости деформаций. Деформации малы по сравнению с размерами элементов. Это позволяет составлять уравнения статики для не деформированной системы.

Гипотеза о совершенной упругости материала. Тела предполагаются абсолютно упругими. Реальные тела упруги до определенного значения приложенной нагрузки.

Гипотеза о линейной зависимости между напряжениями и деформациями. При определенной нагрузке справедлив закон Гука, согласно которому существует пропорциональная зависимость между нагрузкой и деформацией.

В сопротивлении материалов используется принцип независимости действия сил, который заключается в том, что какая- либо величина от действия группы сил Р1 и Р2 может быть найдена от действия каждой силы в отдельности. На (рис. 1.3) показано, что прогиб в точке К или реакция на опоре А от одновременного действия сил Р1 и Р2 равна сумме реакций и соответственно прогибов от раздельного действия сил Р1 и Р2.

Vk=V1+V2 RA= R1 + R2

Принцип суперпозиции - принцип независимости и сложения действия сил, заключающийся в том, что силовые факторы, напряжения и перемещения, т.е. все, кроме работы и потенциальной энергии, можно вычислять от каждой нагрузки отдельно и результаты складывать.

 
  Краткий исторический очерк - student2.ru

Наши рекомендации