Тема 10. Антиалиментарные факторы питания

Помимо чужеродных соединений, загрязняющих пищевые продукты, так называемых контаминантов – загрязнителей, и природных токсикантов, необходимо учитывать действие веществ, не обладающих общей токсичностью но способных избирательно ухудшать или блокировать усвоение нутриентов. Эти соединения принято называть антиалиментарными факторами питания.

Этот термин распространяется только на вещества природного происхождения, которые являются составными частями натуральных продуктов питания.

Перечень антиалиментарных факторов питания, достаточно обширен. Рассмотрим некоторые из них.

Ингибиторы пищеварительных ферментов. К этой группе относятся вещества белковой природы, блокирующие активность пищеварительных ферментов (пепсин, трипсин, химотрипсин, a-амилаза). Белковые ингибиторы обнаружены в семенах бобовых культур (соя, фасоль и др.), злаковых (пшеница, ячмень и др.), в картофеле, яичном белке и др. продуктах растительного и животного происхождения.

Механизм действия этих соединений заключается в образовании стойких комплексов «фермент-ингибитор», подавлении активности главных пищеварительных ферментов и тем самым, снижении усвояемости белковых веществ и других макронутриентов.

К настоящему времени белковые ингибиторы достаточно хорошо изучены и подробно охарактеризованы: расшифрована первичная структура, изучено строение активных центров ингибиторов, исследован механизм действия ингибиторов и т.п.

На основании структурного сходства все белки-ингибиторы растительного происхождения можно разделить на несколько групп, основными из которых являются следующие:

1. Семейство соевого ингибитора трипсина (ингибитора Кунитца);

2. Семейство соевого ингибитора Баумана-Бирка;

3. Семейство картофельного ингибитора I;

4. Семейство картофельного ингибитора II;

5. Семейство ингибиторов трипсина a-амилазы.

Ингибитор Кунитца и ингибитор Баумана-Бирка были выделены из семян сои. Эти ингибиторы подавляют активность трипсина и химотрипсина.

В клубнях картофеля содержится целый набор ингибиторов химотрипсина и трипсина, которые отличаются по своим физико-химическим свойствам: молекулярной массе, особенностям аминокислотного состава, изоэлектрическим точкам, термо- и рН-стабильности и т.п. Кроме картофеля, белковые ингибиторы обнаружены в других пасленовых, а именно – в томатах, баклажанах, табаке. Наряду с ингибиторами сериновых протеиназ в них обнаружены и белковые ингибиторы цистеиновых, аспартильных протеиназ, а также металлоэкзопептидаз.

Эти белковые ингибиторы растительного происхождения характеризуются высокой термостабильностью, что в целом не характерно для веществ белковой природы. Например, полное разрушение соевого ингибитора трипсина достигается лишь 20 минутным автоклавированием при 115°С, или кипячением соевых бобов в течение 2-3 часов. Из этого следует, что употребление семян бобовых культур, особенно богатых белковыми ингибиторами пищеварительных ферментов, как для корма сельскохозяйственных животных, так и в пищевом рационе человека, возможно лишь после соответствующей тепловой обработки.

Цианогенные гликозиды – это гликозиды некоторых цианогенных альдегидов и кетонов, которые при ферментативном или кислотном гидролизе выделяют синильную кислоту – вызывающую поражение нервной системы.

Из представителей цианогенных гликозидов целесообразно отметить лимарин, содержащийся в белой фасоли, и амигдалин, который обнаруживается в косточках миндаля, персиков, слив, абрикос.

Биогенные амины. К соединениям этой группы относятся серотонин, тирамин, гистамин, обладающие сосудосуживающим действием.

Серотонин содержится во фруктах и овощах. Тирамин чаще всего обнаруживается в ферментированных продуктах, например в сыре до 1100 мг/кг. Содержание гистамина коррелирует с содержанием тирамина в сыре от 10 до 2500 мг/кг. В количествах более 100 мг/кг гистамин может представлять угрозу для здоровья человека.

Алкалоиды – весьма обширный класс органических соединений, оказывающих самое различное действие на организм человека. Это и сильнейшие яды, и полезные лекарственные средства. Печально известный наркотик, сильнейший галлюциноген – ЛСД – диэтиламид лизергиловой кислоты, был выделен из спорыньи, грибка, растущего на ржи.

С 1806 г. известен морфин, он выделен из сока головок мака и является очень хорошим обезболивающим средством, благодаря чему нашел применение в медицине, однако при длительном употреблении приводит к развитию наркомании.

Хорошо изучены в настоящее время так называемые пуриновые алкалоиды, к которым относятся кофеин и часто сопровождающие его теобромин и теофиллин.

Содержание кофеина в сырье и различных продуктах колеблется в достаточно широких пределах. Пуриновые алкалоиды при систематическом употреблении их на уровне 1000 мг в день вызывают у человека постоянную потребность в них, напоминающую алкогольную зависимость.

К группе стероидных алкалоидов будут относится соланины и чаконины, содержащиеся в картофеле. Иначе их называют гликоалкалоидами, они содержат один и тот же агликон (соланидин), но различные остатки сахаров.

Соланин входит в состав картофеля. Количество его в органах растения различно (мг%): в цветках – до 3540, листьях – 620, стеблях – 55, ростках, проросших на свету – 4070, кожуре – 270, мякоти клубня – 40.

При хранении зрелых и здоровых клубней к весне количество соланина в них увеличивается втрое. Особенно много его в зеленых, проросших и прогнивших клубнях. Свет, попадающий на картофель, способствует образованию в нем ядовитого гликоалкалоида, а освещенные участки кожуры и мякоти приобретают зеленый цвет.

Действие соланина на организм человека и животного сложное. В больших дозах он вызывает отравление, в малых – полезен (при концентрации его ≈2,8 мг на 1 кг массы тела).

В небольших концентрациях соланин обладает противовоспалительным, антиаллергическим, обезболивающим и спазмолитическим действием. При попадании его на воспаленную кожу или слизистую оболочку отмечается быстрое уменьшение боли, зуда, отечности и воспаления тканей.

Соланин в малых количествах снижает возбудимость нервной системы, уменьшает уровень артериального давления, угнетает выработку соляной кислоты в желудке, улучшает моторную функцию кишечника, увеличивает содержание калия и уменьшает концентрацию натрия в крови.

Хороший эффект достигается при лечении им болезней сердца и почек; язвенной болезни желудка и двенадцатиперстной кишки; гастритов с повышенной кислотностью желудочного сока, запоров и бессонницы.

Некоторые другие плоды растений семейства пасленовых также характеризуются известной или предполагаемой токсичностью. К этим продуктам относятся баклажаны и томаты.

Антивитамины к ним относят две группы соединений.

1-я группа – соединения, являющиеся химическими аналогами витаминов, с замещением какой-либо функционально важной группы на неактивный радикал, т.е. это частный случай классических антиметаболитов.

2-я группа – соединения, тем или иным образом специфически инактивирующие витамины, например, с помощью их модификации, или ограничивающие их биологическую активность.

Если классифицировать антивитамины по характеру действия, как это принято в биохимии, то первая (антиметаболитная) группа может рассматриваться в качестве конкурентных ингибиторов, а вторая – неконкурентных, причем во вторую группу попадают весьма разнообразные по своей химической природе соединения и даже сами витамины, способные в ряде случаев ограничивать действие друг друга.

Рассмотрим некоторые конкретные примеры соединений, имеющих ярко выраженную антивитаминную активность.

Лейцин – нарушает обмен триптофана, в результате чего блокируется образование из триптофана ниацина – одного из важнейших водорастворимых витаминов – витамина РР.

Индолилуксусная кислота и ацетилпиридин – также являются антивитаминами по отношению к витамину РР; содержатся в кукурузе. Чрезмерное употребление продуктов, содержащих вышеуказанные соединения, может усиливать развитие пеллагры, обусловленной дефицитом витамина РР.

Аскорбатоксидаза и некоторые другие окислительные ферменты проявляют антивитаминную активность по отношению к витамину С.

Содержание аскорбатоксидазы и ее активность в различных продуктах неодинакова: наиболее активна аскорбатоксидаза в огурцах, кабачках, наименее – в моркови, свекле, помидорах. При измельчении овощей за 6 часов хранения теряется более половины витамина С, т.к. измельчение способствует взаимодействию фермента и субстрата.

Тиаминаза – антивитаминный фактор для витамина В1 – тиамина. Она содержится в продуктах растительного и животного происхождения, наибольшее содержание этого фермента отмечено у пресноводных и морских рыб, кроме того, тиаминаза продуцируется бактериями кишечного тракта, что может являться причиной дефицита тиамина.

Ортодифенолы и биофлавоноиды (вещества с Р-витаминной активностью), содержащиеся в кофе и чае, а также окситиамин, который образуется при длительном кипячении кислых ягод и фруктов, проявляют антивитаминную активность по отношению к тиамину.

Все это необходимо учитывать при употреблении, приготовлении и хранении пищевых продуктов.

Линатин – антагонист витамина В6, содержится в семенах льна. Кроме этого, ингибиторы пиродоксалевых ферментов обнаружены в съедобных грибах и некоторых видах семян бобовых.

Авидин – белковая фракция, содержащаяся в яичном белке, приводящая к дефициту биотина (витамина Н), за счет связывания и перевода его в неактивное состояние.

Гидрогенизированные жиры – являются факторами, снижающими сохранность витамина А-ретинола.

Говоря об антиалиментарных факторах питания, нельзя не сказать о гипервитаминозах. Известны два типа: гипервитаминоз А и гипервитаминоз Д. Например, печень северных морских животных несъедобна из – за большого содержания витамина А.

Факторы, снижающие усвоение минеральных веществ. К ним в первую очередь следует отнести щавелевую кислоту и ее соли (оксолаты) фитин (инозитолгексафосфорная кислота) и танины.

Продукты с высоким содержанием щавелевой кислоты способны приводить к серьезным нарушениям солевого обмена, необратимо связывать ионы кальция. Установлено, что интоксикация щавелевой кислотой проявляется в большей степени на фоне дефицита витамина Д.

Известны случаи отравлений с летальным исходом, как от самой щавелевой кислоты (при фальсификации продуктов, в частности вин, когда подкисление проводили дешевой щавелевой кислотой), так и от избыточного потребления продуктов, содержащих ее в больших количествах. Смертельная доза для взрослых людей колеблется от 5 до 150 г и зависит от целого ряда факторов. Содержание щавелевой кислоты в среднем в некоторых растениях таково (в мг/100г): шпинат – 1000, ревень – 800, щавель – 500, красная свекла – 250.

Фитин, благодаря своему химическому строению, легко образует труднорастворимые комплексы с ионами Са, Мg, Fе, Zn, и Сu. Этим и объясняется его диминерализующий эффект. Достаточно большое количество фитина содержится в злаковых и бобовых культурах: в пшенице, горохе, кукурузе его содержание ≈400 мг/100г продукта, причем основная часть сосредоточена в наружном слое зерна. Хлеб, выпеченный из муки высшего сорта, практически не содержит фитина. В хлебе из ржаной муки его мало, благодаря высокой активности фитазы, способной расщеплять фитин.

Дубильные вещества, кофеин, балластные соединения могут рассматриваться как факторы, снижающие усвоение минеральных веществ.

Неблагоприятное влияние дубильных и балластных соединений на усвояемость железа тормозится аскорбиновой кислотой, цистеином, кальцием, фосфором, что указывает на необходимость их совместного использования в рационе.

Кофеин, содержащийся в кофе, активизирует выделение из организма кальция, магния, натрия, ряда других элементов, увеличивая тем самым потребность в них.

Показано ингибирующее действие серосодержащих соединений (зобогены) на усвояемость йода. К продуктам зобогенного действия относятся капуста белокочанная, цветная, кольраби, турнепс, редис, некоторые бобовые, арахис – при избыточном их потреблении, поэтому в условиях недостатка йода в воде и пище необходимо их ограниченное потребление.

Алкоголь можно рассматривать как рафинированный продукт питания, который имеет только энергетическую ценность. При окислении 1 г этанола выделяется 7 ккал энергии, что лежит между калорийностью углеводов и жиров. Алкоголь не является источником каких-либо пищевых веществ, поэтому его часто называют источником «холостых» калорий.

Попадая в организм человека, этанол под воздействием фермента – алкогольдегидрогеназы окисляется до ацетальдегида.

Алкоголь синтезируется ферментными системами организма для собственных нужд и в течение дня организм человека способен синтезировать от 1 до 9 г этилового спирта. Эндогенный алкоголь является естественным метаболитом и ферментных мощностей организма вполне хватает для его окисления в энергетических целях.

При потреблении алкоголя в больших количествах ферменты не справляются, происходит накопление этилового спирта и уксусного альдегида, что вызывает симптомы обширной интоксикации (головная боль, тошнота, аритмия сердечных сокращений). Таким образом, алкоголь можно рассматривать как антиалиментарный фактор питания, приводящий к специфическим нарушением обмена веществ.

У людей, потребляющих большие количества алкоголя, обнаруживается дефицит незаменимых веществ. Примером могут служить тяжелые формы недостаточности витаминов у алкоголиков: алкогольные формы полиневрита, пеллагры, бери-бери и т.п., а также гипогликемия, т.к. этанол блокирует синтез глюкозы из лактата и аминокислот.

Хроническое потребление алкогольных напитков приводит не только к авитаминозам, но и к нарушению углеводного, жирового и белкового обмена и заканчивается, как правило, биохимической катастрофой с тяжелыми патологиями.

Таким образом, рассмотренные компоненты пищи способны оказывать неблагоприятное воздействие на организм человека. Сведения о них свидетельствуют о необходимости их учета при составлении рационов питания, при решении ряда технологических вопросов в производстве продуктов питания, а также их кулинарной обработке.

Наши рекомендации