Диссоциация кислот, оснований и солей

Представления о кислотах и основаниях существовали задолго до появ-

ления теории электролитической диссоциации.

Так, кислотами считали вещества, обладающие определенными свойст-

вами: кислый вкус (именно за это свойство эти вещества получили название ки-

слот), способность взаимодействовать с некоторыми металлами с выделением

водорода, изменять окраску многих индикаторов, реагировать с основаниями с

образованием солей.

Щелочами же было принято считать вещества, которые способны раство-

рять серу, масла, быть мыльными на ощупь и главное – нейтрализовать дейст-

вие кислот. Их первоначально получали из золы различных растений. Затем

представления о щелочах было расширено до понятия основания, в которое

включили и щелочи, и щелочные земли, и щелочные металлы и ряд других ве-

ществ. А основным свойством всех этих веществ стала их способность образо-

вывать с кислотами соли.

Новые представления о растворах, связанные с электролитической диссо-

циацией, позволили С. Аррениусу объяснить природу кислот и оснований в

водных растворах.

Согласно представлениям С. Аррениуса кислота есть всякое водородосо-

держащее соединение, которое в водном растворе при диссоциации образует

ион водорода Н+, как, например:

HCl → H+ + Cl- ,

HNO3 → H+ + NO3-,

H2SO4 → 2H+ + SO42-.

А основание – всякое гидроксилсодержащее соединение, которое в вод-

ном растворе при диссоциации дает ион гидроксила ОН-, например:

NaOH → OH- + Na+ ,

Ba(OH)2 → 2OH- + Ba2+.

Процесс нейтрализации кислоты основанием заключается во взаимодей-

ствии ионов водорода Н+ и гидроксила ОН- с образованием воды:

Н+ + ОН- → Н2О.

Кислые растворы обязаны своим вкусом присутствию ионов водорода Н+

(а точнее [Н3О]+), а основания имеют характерный мыльный вкус благодаря

ионам гидроксила ОН-.

Заметим, что данные модельные представления С. Аррениуса о кислотах

и основаниях не являются универсальными. Они применимы лишь к водным

растворам, так как хорошо объясняют их электропроводность, каталитические

свойства кислот (вследствие большой подвижности ионов водорода). А также

факт примерно одного и того же значения теплового эффекта реакции нейтра-

лизации различных кислот основаниями, равным ∆Н = -58 кДж/моль, так как в

основе лежит одна и та же реакция ─ соединение иона водорода с ионом гидро-

ксила, и становятся понятными многие другие стороны поведения кислот, оснований.

Кислотно-основные свойства химических соединений
Любое вещество в определенных условиях может проявлять свойства кислоты и основания по отношению к какому-либо другому веществу, включая и растворитель.
Со времен Аррениуса, по определению которого кислоты в водных растворах диссоциируют на ионы водорода и анионы, а основания диссоциируют на гидроксид-ионы и катионы, круг веществ, участвующих в реакциях кислотно-основного равновесия, значительно расширился. Общепринятой считается протонная теория Бренстеда–Лоури. Протонная теория Бренстеда–Лоури применима лишь к протон-содержащим или протон- присоединяющим веществам. Согласно этой теории кислотой называется вещество, способное быть донором протонов, а основанием – вещество, которое может присоединить (акцептировать) протон:

HAn ↔ An + Н+

По определению, HAn – кислота, An – основание, сопряженное с этой кислотой. Любой кислоте соответствует сопряженное с ней основание. В определенных условиях многие вещества могут вести себя как кислота или как основание в зависимости от того, с каким другим веществом оно вступает в реакцию. Эти два понятия неразделимы, а потому правильнее говорить о кислотно-основных свойствах данного вещества.

Пример 1:

1) Н2СО3 ↔ Н+ + НСО3, 2) НСО3↔ Н+ + СО32–
к о к о

В первом случае гидрокарбонат-анион НСО3является основанием, сопряженным угольной кислоте Н2СО3, во втором – кислотой, сопряженной карбонат-аниону СО32–.

Пример 2:

1) NH3 + H2O ↔ NH4+ + OH, 2) HF + H2O ↔ H3O+ + F
о к к о к о к о

В первом уравнении вода является кислотой, сопряженной гидроксил-аниону ОН-, во втором – основанием, сопряженному гидроксоний-катиону H3O+

В дальнейшем появилось много других экспериментальных данных, свя-

занных в основном с неводными растворителями, и соответственно новых кон-

цепций понимания кислот и оснований. Так, например, растворенная соляная

кислота НСl в бензоле реагирует с аммиаком в качестве кислоты (отдает протон

Н+). Аммиак ведет себя в этой реакции как основание, так как образует вместе с

кислотой соль NH4Cl. И вода в этой реакции не образуется, и нет ионов гидро-

ксилов – символа основания. Символически эту реакцию можно представить

следующей схемой:

NH3 + HCl → NH3 + H+ + Cl- → NH4+ + Cl- .

Классифицировать подобные взаимодействия позволила электронная теория кислот и оснований Льюиса.

Электронная теория Льюиса допускает, что участие в кислотно-основном равновесии протона необязательно, поэтому ее называют апротонной. Согласно апротонной (электронной) теории, кислотой называется вещество, способное присоединять электронную пару, а основанием – вещество, способное отдавать электронную пару. Основанием Льюиса могут быть анионы (Cl-, OH-) или нейтральные молекулы (H2O, NH3).

Кислотами Льюиса могут быть катионы (H+, Fe2+) или нейтральные молекулы, имеющие свободные валентные орбитали (BF3, AlCl3, ZnCl2)
При взаимодействии донора электронной пары :NН3 (основание) и акцептора электронной пары НCl (кислота) образуется более устойчивое электронное окружение (октет) за счет донорно-акцепторной (двухэлектронной двухцентровой) связи.

Аналогично при взаимодействии донора электронной пары :NН3 (основание) и акцептора электронной пары BF3 (кислота) образуется устойчивое соединение за счет донорно-акцепторной (двухэлектронной двухцентровой) связи.

Н3N: + ⇔BF3 → Н3N― BF3

Многоосновные кислоты и многокислотные основания диссоциируют ступенчато.

Так, например, молекулы угольной кислоты Н2СO3 вначале диссоциируют с отще-

плением одного иона водорода по уравнению

1) H2СO3↔ H+раствор + [HСO3]-раствор.

Степень диссоциации этого процесса α1. Затем образовавшиеся кислые анионы угольной кислоты [HСO3]- в свою очередь распадаются под действием молекул воды на более простые ионы:

2) [HСO3]- ↔ H+раствор + [СO3]2-раствор

с отщеплением второго иона водорода. Но этот процесс идет уже много труд-

нее, так как иону водорода Н+ приходится отрываться уже от заряженной отри-

цательно частицы, а не от нейтральной молекулы, как в первом случае. Поэто-

му степень диссоциации второй ступени α2 характеризуется меньшим значени-

ем, т.е. α1>α2. Вследствие этого в растворе содержится лишь небольшое число

ионов [СO3]2-.

Фосфорная кислота диссоциирует в три ступени:

1) Н3РО4 ↔ Н+ + [Н2РО4]-,

2) [H2PO4]- ↔ H+ + [HPO4]2-,

3) [HPO4]2- ↔H+ + [PO4]3-,

каждая из них так же характеризуется соответствующей степенью диссоциа-

ции: α1, α2 и α3, которые тоже находятся в следующем соотношении:

α 1> α 2 > α 3.

А это означает, что ионов [PO4] 3- в растворе почти нет.

Основания, содержащие более одной гидроксильной группы в молекуле,

также диссоциируют ступенчато. Например, гидроксид кальция Са(ОН)2 диссо-

циирует в две стадии:

1) Са(ОН)2 → [CaOH]+ + OH- (α1)

2) [CaOH] + → Ca 2++ OH - (α2).

Гидроксиды многих металлов (Zn(OH)2, Al(OH)3, Be(OH)2, Cr(OH)3, Pb(OH)2 и

других) могут диссоциировать и по кислотному, и по основному механизму.

Например, диссоциацию гидроксида цинка Zn(OH)2 можно выразить уравне-

ниями:

1) Zn(OH)2 ↔ [Zn(OH)]+ + OH-,

2) H2ZnO2 ↔ [HZnO2]+ + H+

или

[Zn(OH)]+ + OH- ↔ Zn(OH)2 ↔ H2ZnO2 ↔ [HZnO2]- + H+.

Диссоциация по тому или иному пути определяется в зависимости от среды: в

кислой среде, где концентрация ионов водорода Н+ велика, ионы гидроксила

связываются с ионами водорода, смещая равновесие в сторону образования ио-

нов [Zn(OH)]+, а в щелочной (концентрация ОН- значительна) ионы ОН-, взаимо-

действуя с ионами водорода, смещают равновесие в сторону образования ионов

[HZnO2]-. Так или иначе оба процесса приводят к образованию слабого электро-

лита – воды:

Н+ + ОН- = Н2О.

Соединения, которые в зависимости от условий диссоциируют как по ки-

слотному, так и по основному механизму, называют амфотерными электроли-

тами, или амфолитами (от греческого “amphoteros” – обоюдный, в смысле

двусторонний).

Соли, как известно, являются продуктом реакции нейтрализации. В зави-

симости от полноты нейтрализации соли могут быть: средние, или нейтральные

(например, К3РО4, Са(NO3)2, NaCl); кислые, если не все водородные ионы в моле-

куле кислоты замещены на металл (например, КН2РО4, NaHSO4, СsHCO3), и ос-

новные, если в составе молекулы соли имеется гидроксильная группа ОН- (на-

пример, ZnOHCl, Fe(OH)2Cl, AlOHSO4). В водных растворах они диссоциируют на

катионы металлов (или комплексные катионы) и анионы (одноатомные или

многоатомные).

Средние соли называют используя название кислотного остатка в именительном падеже и катиона металла в родительном. Например, соли К3РО4, Са(NO3)2, NaCl называют фосфат калия, нитрат кальция, хлорид натрия соответственно.

Кислые соли называют аналогичным образом, добавляя к названию кислотного остатка приставку гидро, дигидро, тригидро, и.т.д. Например, соли КН2РО4, NaHSO4, СsHCO3 называют дигидрофосфат калия, гидросульфат натрия, гидрокарбонат цезия соответственно.

Основные соли называют аналогично средним, добавляя к названию катиона приставку гидроксо, дигидроксо и. т.д. Например, соли ZnOHCl, Fe(OH)2Cl, AlOHSO4 называют хлорид гидроксоцинка, хлорид дигидроксожелеза, сульфат гидроксоалюминия соответственно.

Средние соли диссоциируют практически полностью. Например, в вод-

ном растворе сульфата натрия Na2SO4 практически нет молекул Na2SO4, а имеют-

ся только ионы Na+ и SO42-, что выражается уравнением

Na2SO4 → 2 Na+ + SO42-.

Кислые соли диссоциируют ступенчато, отщепляя вначале ионы метал-

лов, а затем ионы водорода, например:

1) KН2РО4 → К+ + [Н2 РО4]-,

2) [H2PO4]- ↔ H+ + [HPO4]2-,

3) [HPO4]2- ↔ H+ + [PO4]3-.

Ступенчато диссоциируют также и основные соли. Например, дигидрок-

сохлорид железа Fe(OH)2Cl диссоциирует в три стадии, которые можно предста-

вить следующими уравнениями:

1) Fe(OH)2Cl → [Fe(OH)2]+ + Cl-,

2) [Fe(OH)2]+ ↔ [Fe(OH)]2+ + OH-,

3) [Fe(OH)]2+ ↔ Fe3+ + OH-.

Диссоциация кислых и основных солей протекает практически полно-

стью по первой ступени. На тех стадиях, когда происходит распад сложных

анионов кислых солей или катионов основной соли (появляются ионы водорода

или гидроксила) степень диссоциации очень незначительна. А это значит, что в

растворе практически отсутствуют ионы РО43- и Fe3+ при ступенчатой диссоциа-

ции дигидрофосфата калия и дигидроксохлорида железа соответственно в при-

веденных примерах.

Константа диссоциации

Процесс диссоциации является обратимым. Наряду с распадом нейтраль-

ных молекул на ионы протекает и обратный процесс ассоциации, взаимодейст-

вия ионов между собой с образованием исходных, нейтральных молекул. При

постоянстве внешних условий (температуры, концентрации, давления) в рас-

творе рано или поздно устанавливается равенство скоростей процессов диссо-

циации и ассоциации. Наступает равновесие.

Рассмотрим наиболее простой случай диссоциации молекул растворенно-

го вещества на два иона (говорят: бинарный электролит). В качестве примера

возьмем раствор уксусной кислоты СН3СООН, диссоциирующий по уравнению

СН3СООН ↔ CH3COO- + H+.

Константа равновесия этого процесса Кр согласно закону действующих масс за-

пишется в виде выражения:

[CH3COO] · [ H+] CМ (CH 3COO) · CМ (H+)

Кр = ―—————— или Кр = ————————————

[CH3COOH ] CМ CH3COOH

где [CH3COO-] = CМ (CHзСОО-), [H+] = CМ(H+)и [CH3COOH] = CМ (CHзCOOH) ─ молярные концентрации соответственно ацетат-иона, иона водорода и нераспавшихся молекул уксусной кислоты.

Поскольку константа равновесия относится к процессу диссоциации, то

ее можно назвать константой диссоциации Кд. Она показывает, что в состоянии

равновесия концентрации образовавшихся ионов и нераспавшихся молекул на-

ходятся во взаимосвязи. Изменение концентрации любого из компонентов в

растворе, автоматически приведет к изменению концентрации других, но так,

чтобы их соотношение оставалось тем же самым – равным константе диссоциа-

ции Кд = Кр.

Если константа диссоциации больше единицы (числитель выражения

больше знаменателя), то в растворе очень мало нераспавшихся молекул и много

ионов. Следовательно, чем меньше константа диссоциации, тем слабее диссо-

циирует растворенное вещество, тем прочнее его молекулы в данном раствори-

теле. Зная величины констант диссоциации различных веществ в данном рас-

творителе, можно судить и об их степени диссоциации в растворе. А какова ана-

литическая связь константы равновесия со степенью диссоциации, ведь по-

следняя зависит от концентрации?

Предположим, что исходная концентрация растворяемой уксусной ки-

слоты С моль/л (молярная). Растворившись в воде, молекулы уксусной кислоты частично будут распадаться на ионы. Если степень диссоциации α, то равновесная концентрация распавшихся молекул на ионы будет αСМ , а равновесная концентра-

ция оставшихся (нераспавшихся) молекул уксусной кислоты будет составлять

разницу между исходной концентрацией растворенных молекул С и концентра-

цией распавшихся αС:

СМ – αСМ = [CH3COOH].

При распаде одной молекулы СН3СООН на ионы образуется соответственно

один ион водорода Н+ и один ацетат–ион СН3СОО- (см. уравнение диссоциации

уксусной кислоты). Если же распадается на ионы αС молей СН3СООН, то соот-

ветственно и концентрация образовавшихся молей ионов водорода будет αС и

ацетат─ ионов тоже αС, то есть равновесные концентрации ионов равны между

собой и составляют величину: αС = [H+] = [CH3COO-].

Подставим значения равновесных концентраций частиц в выражение

константы диссоциации:

[H+] · [CH3COO ] αC · αC

Кд = ———————— = —————— .

[CH3COOH ] C − αC

После упрощения (сократив числитель и знаменатель на С) получим:

α2C

Кд = —— .

1 - а

Полученное выражение носит название закона разбавления В. Оствальда.

Оно связывает степень диссоциации с концентрацией растворенного вещества.

Для слабых электролитов, у которых степень диссоциации меньше 0,03

(α < 0,03), величиной α в знаменателе этого выражения можно пренебречь, так

как 0,03 много меньше единицы (0,03 << 1). Тогда уравнение В. Оствальда

можно упростить: ([H+] << С)

Кд ≈ α 2С или α= Диссоциация кислот, оснований и солей - student2.ru .

Теперь явно видно, что степень диссоциации обратно пропорциональна кон-

центрации растворенного вещества: чем выше концентрация, тем меньше сте-

пень диссоциации.

Слабые многоосновные кислоты, а также двух- и более кислотные осно-

вания характеризуются несколькими константами диссоциации, соответствую-

щими каждой ступени диссоциации. Например, угольная кислота Н2СО3 имеет

две константы диссоциации: Кд 1 = 4,45 · 10-7 и Кд 2 = 4,69 · 10-11, которые соответству-

ют двум ступеням диссоциации:

1) Н2СО3 = Н+ + НСО3-д1= 4,45 · 10-7),

2) НСО3- = Н+ + СО32-д2= 4,69 · 10-11).

Константа диссоциации каждой последующей ступени на несколько по-

рядков (как правило, на 10-5) ниже предыдущей (см. таблицу 2.8).

Таблица 2.8

Наши рекомендации