Коллигативные свойства растворов

Растворители под влиянием растворённых в них веществ изменяют свои физические свойства. Растворы, в отличие от чистых растворителей, проявляют особые свойства, известные под названием «коллигативные», что значит взаимосвязанные.

Коллигативные свойства – это свойства растворов, зависящие только от числа растворённых частиц в единице массы растворителя и от абсолютной температуры, и не зависящие от их природы. Например, все одномоляльные растворы неэлектролитов (содержащие 1 моль растворённого вещества на 1 кг растворителя), имеют одинаковые отличия в температуре замерзания и кипения от чистых растворителей, и одинаковое осмотическое давление.

К коллигативным свойствам относятся:

  1. диффузия;
  2. понижение давления насыщенного пара растворителя над раствором, по сравнению с насыщенным паром растворителя над чистым растворителем;
  3. повышение температуры кипения раствора, по сравнению с чистым растворителем;
  4. понижение температуры замерзания раствора, по сравнению с чистым растворителем;
  5. осмотическое давление.

1. Диффузия – это самопроизвольный процесс выравнивания концентрации растворённого вещества в объёме.

Она обусловлена 2 факторами: 1) наличием рыхлой структуры и пустот в растворителе (например, в 1 л воды её молекулами занято только примерно 370 мл), 2) тепловым движением частиц раствора.

Диффузия прекращается, если концентрация во всех частях раствора становится одинаковой. Скорость диффузии зависит от:

1. абсолютной температуры;

2. градиента концентрации;

3. вязкости растворителя;

4. размера диффундирующих частиц.

Скорость диффузии возрастает при повышении температуры и градиента концентрации и уменьшается при увеличении вязкости растворителя, размера и массы диффундирующих частиц. Поэтому растворы высокомолекулярных соединений (ВМС - белков, полисахаридов и др.) имеют очень низкий коэффициент диффузии.

Диффузия может быть выражена количественно. Её описывает закон Фика: количество растворенного вещества m, проходящее за время t через площадь поперечного сечения сосуда S, которая разделяет растворы с разными концентрациями C1 и C2 определяется уравнением:

m / t = - DS ×(C2 –C1) / x2 – x1,

где: m/t – скорость диффузии, D – коэффициент диффузии, равный количеству вещества, диффундирующего через 1 см2 поверхности раздела за время t при градиенте концентраций, равном 1; S – площадь поперечного сечения сосуда; (C2–C1) – градиент концентраций; (x2–x1) – расстояние, пройденное диффундирующей частицей от дна сосуда из раствора с концентрацией C1 в раствор с концентрацией C2 (рис. 3.6).

 
  Коллигативные свойства растворов - student2.ru

Рис. 3.6. Закон Фика

Для биологических мембран это уравнение имеет следующий вид:

m / t = - рS (C2 –C1),

где: р – коэффициент проницаемости мембраны, C1 и C2 – концентрации по обе стороны мембраны.

Диффузия играет важную роль в биологических системах. Благодаря диффузии осуществляется транспорт метаболитов внутри клеток и через мембрану. Так, например, в организме человека ежеминутно путём диффузии через стенки капилляров перемещается 1500 л жидкости.

2. Понижение давления насыщенного пара растворителя над раствором, по сравнению с насыщенным паром растворителя над чистым растворителем. При данной температуре давление насыщенного пара над каждой жидкостью – величина постоянная. При растворении в жидкости нелетучего вещества давление насыщенного пара этой жидкости над ней понижается. Т.о., давление насыщенного пара растворителя над раствором всегда ниже, чем над чистым растворителем при той же температуре. Разность между этими величинами называют понижением давления пара над раствором (или понижением давления пара раствора). Отношение величины этого понижения к давлению насыщенного пара над чистым растворителем называется относительным понижением давления пара над раствором.

Пусть давление насыщенного пара растворителя над чистым растворителем равно Р0, а над раствором – Р. Тогда относительное понижение давления пара над раствором будет представлять собою дробь: (Р0 – Р) / Р0.

Это относительное понижение давления насыщенного пара растворителя над раствором равно мольной доле растворённого вещества (закон Рауля). Математически закон Рауля можно выразить так:

0 – Р) / Р0 = n / n+N,

где: Р0 – давление насыщенного пара над чистым растворителем, Р – давление насыщенного пара над раствором, n – число молей растворённого вещества, N – число молей растворителя в определенном объёме, n+N – молярная (мольная) доля растворённого вещества.

Следствием закона Рауля являются два свойства растворов: температура замерзания растворов ниже, а температура кипения – выше, чем у чистых растворителей. Причём повышение температуры кипения и понижение температуры замерзания растворов неэлектролитов прямо пропорциональны их моляльной концентрации. В результате при атмосферном давлении, например, водные растворы кипят при температуре выше 100°С и замерзают при температуре ниже 0°С.

3. Повышение температуры кипения раствора, по сравнению с чистым растворителем. Известно, что раствор начинает кипеть тогда, когда давление его насыщенного пара равно внешнему давлению. Следовательно, раствор закипает при более высокой температуре, чем чистый растворитель.

4. Понижение температуры замерзания раствора, по сравнению с чистым растворителем. Растворы замерзают при температуре ниже, чем чистый растворитель.

5. Осмос – это односторонняя диффузия растворителя через полупроницаемую мембрану в сторону раствора с большей концентрацией растворённого вещества.

Осмос вызывается осмотическим давлением – силой, отнесённой к единице поверхности мембраны. Осмотическое давление имеется у любого раствора. Оно обусловлено стремлением частиц растворителя путём диффузии распределиться в максимально большем объёме.

Осмотическое давление растворов неэлектролитов пропорционально молярной концентрации (при постоянной температуре) и абсолютной температуре (при постоянной концентрации) раствора:

Росм = RCT,

где: R – универсальная газовая постоянная равная 8,31 Дж/(моль×К), C – молярная концентрация раствора, T – его абсолютная температура.

Закон Вант-Гоффа: учитывая, что С = n/V, получаем: РосмV = nRT. Для растворов электролитов вводится поправочный коэффициент i, показывающий во сколько раз истинная концентрация растворённых частиц, осмотическое давление, понижение температуры замерзания, повышение температуры кипения, понижение давления насыщенного пара растворителя больше, чем в эквивалентном растворе неэлектролита:

i = Cэл/Cнеэл= Pосмэл/Pосмнеэл = Δt°з эл/Δt°з неэл = Δt°к эл/Δt°к неэл

Математичекое выражение закона Вант-Гоффа для водных растворов электролитов имеет вид:

РосмV = inRT

Осмоляльность крови в значительной степени зависит от концентрации ионов натрия и хлора, в меньшей степени глюкозы и мочевины. В норме осмоляльность сыворотки крови 275-296 мосмоль/кг Н2О, осмоляльность мочи обусловлена мочевиной, ионами натрия, калия, аммония. Осмоляльность мочи колеблется значительно: от 50 до 1400 мосмоль/кг Н2О. При суточном диурезе около 1,5 л осмоляльность мочи здорового человека составляет 600-800 мосмоль/кг Н2О.

При патологических состояниях осмоляльность крови может как снижаться, так и повышаться. Гипоосмоляльностьхарактеризует снижение концентрации натрия в крови при передозировке диуретиков, избыточной продукции антидиуретического гормона, при хронической сердечной недостаточности, циррозе печени с асцитом, глюкокортикоидной недостаточности. Гиперосмоляльность связана с гипернатриемией и наблюдается при сахарном диабете, недостаточности калия, гиперкальциемии, при декомпенсированном сахарном диабете (гипергликемической коме), при гиперальдостеронизме, избыточном введении кор­тикостероидов, при хронической почечной недостаточности наблюдается увеличение концентрации мочевины (каждые 5 ммоль/л мочевины увеличивают осмоляльность крови на 5 мосмоль/кг Н2О), параллельно происходит снижение концентрации натрия в крови, поэтому осмоляльность крови значительно не меняется.

Ранним признаком снижения функции почек является нарушение функции разведения и концентрирования мочи. При максимальном водном диурезе ренальная дисфункция проявляется в неспособности почек снижать осмолярность мочи ниже 90 мосмоль/кг Н2О при норме снижения до 20-30 мосмоль/кг Н2О. При 18-24-часовом ограничении приема жидкости нарушается способность максимально концентрировать мочу - осмоляльность мочи менее 800 мосмоль/кг Н2О.

Явление осмоса играет важную роль во многих химических и биологических системах. Благодаря осмосу регулируется поступление воды в клетки и межклеточные структуры. Упругость клеток (тургор), обеспечивающая эластичность тканей и сохранение определенной формы органов, обусловлена осмотическим давлением. Животные и растительные клетки имеют оболочки или поверхностный слой протоплазмы, обладающие свойствами полупроницаемых мембран. При помещении этих клеток в растворы с различной концентрацией наблюдается осмос.

Все биологические жидкости (лимфа, сыворотка и плазма крови) – растворы, поэтому они обладают коллигативными свойствами. Осмотическое давление в биологических жидкостях зависит как от растворённых в них минеральных веществ, так и от ВМС (белков, нуклеиновых кислот, полисахаридов). Осмотическое давление крови человека постоянно и при 37°С составляет 7,4-7,8 атм. (0,74-0,78 МПа). Учитывая это, в медицинской практике во избежание осмотических конфликтов широко используют различные изотонические растворы.

Изотонический раствор – раствор какого-либо вещества в воде, осмотическое давление которого равно осмотическому давлению крови. Например, 0,85% раствор NaCl, 5% раствор глюкозы. В изотонических растворах эритроциты не изменяют свою форму, т.к. Росм изотонического раствора равно Росм эритроцита, поэтому потоки Н2О в эритроцит и из него уравновешены. Изотонические растворы используют в качестве кровезаменителей при небольших потерях крови или для внутривенного введения растворённых в них лекарственных веществ.

Существуют и неизотонические растворы: гипотонические и гипертонические. Раствор, осмотическое давление которого ниже изотонического, называется гипотоническим. Раствор, осмотическое давление которого выше изотонического, называется гипертоническим.

Введение в организм значительных объёмов неизотонических растворов может привести к осмотическим конфликтам. Росм гипертонического раствора больше Росм эритроцитов. В результате ток воды направлен из эритроцитов в окружающую среду (в сторону раствора с большей концентрацией). Наступает обезвоживание эритроцитов и, как следствие, их сморщивание (плазмолиз).

Росм гипотонического раствора меньше Росм эритроцита. В результате ток воды направлен в эритроцит из окружающей среды (в сторону раствора с большей концентрацией). Наступает набухание эритроцита и, как следствие, его разрыв (гемолиз). Тем не менее, неизотонические растворы применяют в медицине.

Например:

1. при повышении внутриглазного давления (глаукоме) небольшое количество гипертонического раствора вводят внутривенно, чтобы «оттянуть» избыточное количество воды из передней камеры глаза и, тем самым, снизить внутриглазное давление;

2. повязки с гипертоническим раствором NaCl (10% водный раствор) используют для лечения гнойных ран – ток раневой жидкости направляется по марле наружу, что способствует постоянному очищению раны от гноя, микроорганизмов и продуктов распада;

3. гипертонические растворы MgSO4 и Na2SO4 используют в качестве слабительных средств, эти соли плохо всасываются в ЖКТ, что вызывает переход Н2О из слизистой в просвет кишечника; в результате, увеличивается объём кишечного содержимого, раздражаются рецепторы слизистой, усиливается перистальтика, и ускоряется эвакуация кишечного содержимого;

4. введение гипотонических растворов входят в программу лечения гиперосмолярной комы – тяжёлого осложнения сахарного диабета.

Часть осмотического давления, которое обусловлено только растворёнными белками, называется онкотическим давлением. Оно составляет примерно 0,5% от общего осмотического давления и равно 0,04 атм или 30-40 см водного столба.

Биологическое значение онкотического давления состоит в том, что оно поддерживает равновесие между кровью и внеклеточной жидкостью для постоянного обмена питательными веществами и конечными продуктами обмена.

Согласно гипотезе Старлинга, в крови, в артериальной и венозной частях капилляров, соотношение между гидростатическим давлением, обусловленным работой сердца (45 и 15 см водного столба соответственно), и онкотическим давлением (30 см водного столба) различно. Разница давлений одинакова и составляет 15 см водн. ст., но в артериальной области преобладает Ргидр, а в венозной области – Ронк.

Артериальная область Венозная область

Коллигативные свойства растворов - student2.ru Ргидр.= 45 см водн. ст. Ргидр = 15 см водн. ст.

Коллигативные свойства растворов - student2.ru Коллигативные свойства растворов - student2.ru Коллигативные свойства растворов - student2.ru Коллигативные свойства растворов - student2.ru Коллигативные свойства растворов - student2.ru Коллигативные свойства растворов - student2.ru Коллигативные свойства растворов - student2.ru Ронк = 30 см водн. ст. Ронк = 30 см водн. ст.

∆Р=15 см водн. ст. в пользу ∆Р=15 см водн. ст. в пользу

гидростатического давления онкотического давления

Отток из крови ↔ приток в кровь

Рис.3.7. Гипотеза Старлинга в норме

Таким образом, в артериальной части, где преобладает Ргидр, это способствует выходу безбелковой части плазмы и с ней веществ из крови в межклеточную жидкость. Оттуда питательные вещества поступают в клетки. В венозной части более высокое Ронк вызывает движение тока жидкости и с ней веществ по осмотическому градиенту из клеток окружающих тканей в кровь. Происходит выведение метаболитов и продуктов распада из клеток. В физиологических условиях отток безбелковой части плазмы равен притоку, т.к. разность давлений в артериальной и венозной части одинаковая.

При нарушении этого равновесия может развиваетсяся отёк. Отёк– накопление внесосудистой жидкости. Одна из причин отёка – гипопротеинемия – уменьшение концентрации белков в плазме, ведущая к снижению онкотического давления. Она возникает вследствие длительного голодания («голодные отёки»), нарушения синтеза белков для плазмы в печени, потери с мочой при заболеваниях почек, обширных ожогах и т.п.

Наши рекомендации