Теоретические основы работы

Коллоидным раствором называется система, состоящая из частиц дисперсной фазы и дисперсионной среды, где частицы фазы являются тонко (высоко)дисперсными. Системы, имеющие размеры частиц дисперсной фазы 10-7 – 10-9 м, могут быть получены двумя способами: конденсацией частиц вещества в гомогенных системах и дроблением крупных частиц до нужной степени дисперсности в гетерогенных системах.

Конденсационный способ образования дисперсных систем связан с выделением новой фазы из гомогенной системы, находящейся в метастабильном состоянии. Химический потенциал вещества в новой (стабильной) фазе меньше, чем в прежней метастабильной фазе (m2 < m1). Этот процесс проходит через стадию образования зародышей новой фазы, отделенных от прежней фазы поверхностью раздела. Образование зародышей новой фазы в метастабильной системе происходит в областях, где возникают флуктуации плотности вещества достаточной величины. Размеры образующихся частиц зависят от условий проведения процесса конденсации, т.е. от соотношения между скоростями двух одновременно идущих процессов – образования зародышей и увеличения их размеров. Для получения частиц коллоидных размеров необходимо значительное преобладание скорости образования зародышей.

Конденсационный способ получения включает два метода:

1) Физическая конденсация – это конденсация молекул одного вещества (дисперсной фазы) в другом (дисперсионной среде). Например, метод замены растворителя добавлением спиртовых растворов веществ в воду;

2) Химическая конденсация – получение коллоидных систем в результате протекания химической реакции с образованием трудно растворимого соединения, при этом могут быть использованы реакции любого типа. При получении коллоидов данным методом должны соблюдаться некоторые условия:

а) один из продуктов реакции должен быть трудно растворимым;

б) одно из исходных реагирующих веществ – электролит-стабилизатор, должно быть в избыточном количестве, для образования на поверхности кристалла двойного электрического слоя (ДЭС) – основного фактора агрегативной устойчивости;

Размер коллоидных частиц соизмерим с длиной волны света, поэтому для них характерны оптические свойства: 1) светорассеивание (рассеивается более интенсивно коротковолновая часть спектра, поэтому в растворе под действием узконаправленного луча появляется конус Тиндаля и бесцветный раствор золя приобретает различную окраску в отраженном и прямом свете; 2) абсорбция (объемное поглощение) световой волны.

Определить знак заряда коллоидной частицы в окрашенных золях можно простейшим методом капиллярного анализа. Матрица фильтровальной бумаги заряжена отрицательно. При нанесении на фильтровальную бумагу капли золя с положительно заряженными частицами идет адсорбция золя в центре пятна, а золь с отрицательно заряженными частицами дает равномерно окрашенное пятно.

Самопроизвольное разрушение коллоидных систем данной степени дисперсности называется коагуляцией. Любая коллоидная система характеризуется двумя видами устойчивости – агрегативной (способность сохранять данную степень дисперсности) и кинетической (способность сохранять равномерное распределение частиц дисперсной фазы по всему объему системы). Процесс коагуляции состоит из двух стадий: а) в силу изменения каких - либо параметров коллоидной системы (температуры, ионного состава и т.д.) она теряет агрегативную устойчивость, степень дисперсности уменьшается, коллоидные частицы укрупняются - это стадия скрытой коагуляции; б) стадия явной коагуляции является следствием потери системой и кинетической устойчивости. Последнюю стадию можно наблюдать визуально. Скорость коагуляции определяют следующие факторы:

1. Радиус действия сил притяжения. Этот радиус очень мал (порядка размера самих частиц), но всё же различен у частиц различных коллоидов. Увеличение этого радиуса способствует процессу коагуляции.

2. Скорость броуновского движения, которая определяет число столкновений частиц в единицу времени. Отсюда же вытекает и ускоряющее действие повышения температуры на коагуляцию.

3. Концентрация коллоидного раствора. Чем больше частиц находится в единице объёма, тем больше вероятность их столкновения, приводящего к слипанию их, тем выше скорость коагуляции.

4. Концентрация электролита. Наиболее важным фактором является электролитный баланс в системе. Увеличение содержания электролитов в системе приводит к сжатию ДЭС на межфазной границе: частица дисперсной фазы – дисперсионная среда и, следовательно, понижению энергетического барьера, препятствующего слипанию частиц (укрупнению) при их столкновении. Коагуляцию золя вызывает тот ион электролита-коагулятора, у которого знак заряда одноимёнен со знаком заряда противоиона мицеллы. Порог коагуляции зависит и от валентности коагулирующего иона. Эта зависимость выражается правилом значности (правилом Шульце-Гарди).

Воздействуя на (ДЭС), можно вызвать разрушение золя т.е. коагуляцию и затем отделение фазы от среды, т.е. седиментацию. Так коагуляцию можно вызвать введением электролитов или золей противоположного знака заряда. Разрушение золя можно вызвать и путем изменения температуры, которая влияет на адсорбцию ионов и молекул растворителя коллоидными частицами. Как правило, повышение температуры ведет к разрушению золей, однако известны случаи коагуляции золей и при понижении температуры.

Экспериментальная часть

Наши рекомендации