Биологическое значение обмена гликогена в печени и мышцах

Сравнение этих процессов позволяет сделать следующие выводы:

· синтез и распад гликогена протекают по разным метаболическими путям;

· печень запасает глюкозу в виде гликогена не столько для собственных нужд, сколько для поддержания постоянной концентрации глюкозы в крови, и, следовательно, обеспечивает поступление глюкозы в другие ткани. Присутствие в печени глюкозо-6-фосфатазы обусловливает эту главную функцию печени в обмене гликогена;

· функция мышечного гликогена заключается в освобождении глюкозо-6-фосфата, потребляемого в самой мышце для окисления и использования энергии;

· синтез гликогена - процесс эндергонический. Так на включение одного остатка глюкозы в полисахаридную цепь используется 1 моль АТФ и 1 моль УТФ;

· распад гликогена до глюкозо-6-фосфата не требует энергии;

· необратимость процессов синтеза и распада гликогена обеспечивается их регуляцией.

11. Пентозо-фосфатный путь расщепления глюкозы:протекает в цитоплазме клеток и включает две стадии: 1) окислительная 2)неокислительная.

В ходе окислительноо этапа образуются НАДФН, а также фосфорилированные пентозы.

Неокислительная стадия: в ней происходит превращение пентоз, при этом образуются промежуточные продукты С3,С4,С6 углеродных атомов. В пентозо-фосфатном пути, в который вступают 6 молекул глюкозы, одна расщепляется до СО2, а остальные регенирируются.

Окислительная стадия:

1. Глюкозо-6-фосфат + 6 НАДФ = 6-Фосфоглюко-нолактон + 6 НАДФН + 6Н+

2. 6-Фосфоглюконолактон=6-Фосфоглюконат

3. 6-Фосфоглюконат + 6 НАДФ=6 Риболозо-5-фосфат + 6 НАДФН + 6 H+ + 6CO2

4. 2 Рибулозо-5-фосфат=2 Рибозо-5-фосфат

5. 4 Рибулозо-5-фосфат = 4 2-Ксилулозо-5-фосфат

Значение пентозо-фосфатного пути: Образование пентозы используется для синтеза нуклеотканных коферментов, мононуклеотидов( АМФ, УМФ, ЦМФ, ТМФ) и нуклеиновых кислот.

Пентозо-фосфатный путь сост. 50% НАДФН необходимого организму. ПФП наиболее активен в печени, жировой ткани, коре надпочечников, щитовидной железе, эритроцитах.

Распад жирных кислот

Жирные кислоты в виде триглицеридов накапливаются в жировых тканях. При потребности под действием таких веществ как адреналин, норадреналин, глюкагон и адренокортикотропина запускается процесс липолиза. Освобождённые жирные кислоты выделяются в кровоток, по которому попадают к нуждающимся в энергии клеткам, где сперва при участии АТФ происходит связывание (активация) с коферментом А (КоА). При этом АТФ гидролизуется до АМФ с освобождением двух молекул неорганического фосфата (Pi).

R-COOH + КоА-SH + АТФ → R-CO-S-КоА + 2Pi + H+ + АМФ

Синтез жирных кислот протекает в цитозоле из Ацетил-КоА, образовавшегося в митохондриях при гликолизе. Для использования ацетилкоэнзима-А в процессах, протекающих в цитоплазме клетки, протекает ряд реакций для переноса Ацетил-КоА через митохондриальную мембрану.

В митохондриях ацетил-КоА взаимодействует со Щавелевоуксусной кислотой (ЩУК), образуется лимонная кислота. В цитоплазме протекает обратный процесс. Таким образом, в цитоплазме образуется Ацетил-КоА.Для синтеза жирных кислот протекает еще ряд последовательных реакций, образуется малонил-КоА. Ацетильная и малонильная группы переносятся на АПБ при участии ацетил-и малонил-трансацилаз. АПБ — ацилпереносящий белок. Далее к Ацетил-АПБ прибавляется Малонил-АПБ с образованием Ацетоацетил-АПБ. Наступает цакл реакций, противоположных бета-окислению жирных кислот, но вместо КоА носителем является АПБ, а вместо НАД и ФАД в процессах гидрирования участвует НАДФН2.

Бутирил-АПБ вступает в новый цикл (взаимодействует с малонил-АПБ), в результате которого углеродная цепь удлиняется на 2 атома. Циклы повторяются, пока цепь включит 16 атомов углерода (пальмитиновая кислота) или большего четного числа.

Насыщенные жирные кислоты

Общая формула: CnH2n+1COOH или CH3-(CH2)n-COOH

важная роль НЖК в организме определяется, прежде всего, биологическими эффектами специфического для них перекисного окисления и высокой физиологической активностью образующихся эйкозаноидов. Ненасыщенные жирные кислоты - это профилактика атеросклероза, строительный материал для клеток, профилактика внезапной смерти от остановки сердца.

Синтез глицерина

Восстановлением ацетона был получен изопропиловый спирт СН3—СНОН—СН3, при отнятии воды дающий пропилен СН3—СН=СН2, который, присоединяя хлор, превращается в хлористый пропилен СН3—СНСl—СН2Сl; при действии на него хлора получается трихлорпропан (трихлоргидрин глицерина) СН2Сl—СНСl—СН2Сl, при нагревании с водой дающий глицерин. Глицерин может быть получен также осторожным окислением аллилового спирта перманганатом в щелочной среде.

Окисление глицерина

Глицерин сначала фосфорилируется с участием АТФ до глицерофосфата (3-фосфоглицерол). Затем под действием НАД-зависимой глицерофосфатдегидрогеназы окисляется до 3-фосфоглицеринового альдегида. Фосфоглицериновый альдегид далее может окисляться до пировиноградной и молочной кислоты.

Распад глицерина и высших жирных кислот. В обмене жиров характерно широкое использование продуктов их распада для ресинтеза. Поэтому значительная часть р-моноглицеридов, глицерина и свободных высших жирных кислот, освобождающихся при гидролизе триглицеридов, используется для ресинтеза триглицеридов же, но несколько иного состава и строения, характерного для того или иного организма (если для этого используются пищевые жиры) или органа (если идет перестройка жиров в пределах организма).

Так как новообразованные жиры неизбежно отличаются от распавшихся триглицеридов по строению и соотношению остатков высших жирных кислот (в соответствии с их видовой или тканевой специфичностью), то часть высших жирных кислот и некоторая доля глицерина подвергаются дальнейшей деструкции. Глицерин независимо от того, поступил ли он на ресинтез жиров или будет претерпевать дальнейший распад, прежде всего фосфорилируется. Донором остатка фосфорной кислоты в этой реакции служит АТФ. Процесс ускоряется соответствующей фосфотрансферазой. Глицерофосфат в основном идет на синтез новых молекул триглицеридов, но часть его окисляется с образованием диоксиацетон-фосфата

14. Триглицериды синтезируютсяв стенке кишечника, в печени и жировой ткани (в адипоцитах).

Синтез триглицеридов в стенке кишечника может происходить из моноглицерида (из 2-моноацилглицерола) и двух молекул активных жирных кислот (остатки жирных кислот в комплексе с ацилпереносящим энзимом – S-КоА), или из глицерина и трех молекул активных жирных кислот с участием АТФ, что более характерно для процессов в печени и жировой ткани.

Синтез жира из глицерина и жирных кислот в печени и жировой ткани происходит по следующему пути. Глицерин фосфорилируется с использованием АТФ до глицерофосфата (фермент глицеролкиназа), затем под действием фермента глицеролфосфатацилтрансферазы взаимодействует с двумя молекулами ацилкоэнзима-А (например, с пальмитил-КоА). Образуется фосфатидная кислота (3-фосфо-1,2-диацилглицерол). При взаимодействии последней с ацилкоэнзимом-А образуется триглицерид, свободный HS-КоА и остаток ортофосфорной кислоты.

Печень – основной орган, где идет синтез жирных кислот из продуктов гликолиза. Основной путь синтеза триглицелидов в печени из жирных кислот и глицерофосфата. Глицерофосфат, в свою очередь, в печень поступает из гидролиза жиров, а так же при восстановлении диоксиацетонфосфата (из гликолиза) при помощи восстановленного НАДФ (НАДФ Н+Н).

Распад триацилглицеринов активируется ферментом — тканевой липазой.

15.Фосфолипи́ды — сложные липиды, сложные эфиры многоатомных спиртов и высших жирных кислот. Содержат остаток фосфорной кислоты и соединенную с ней добавочную группу атомов различной химической природы.

Классификация:В зависимости от входящего в их состав многоатомного спирта принято делить фосфолипиды на три группы:1.глицерофосфолипиды - содержат остаток глицерина;2.фосфосфинголипиды - содержат остаток сфингозина;3.фосфоинозитиды - содержат остаток инозитола

Биологическая роль:Главный липидный компонент клеточных мембран. Они сопутствуют жирам в пище и служат источником фосфорной кислоты, необходимый для жизни человека.

Фосфолипиды входят в состав всех клеточных мембран. Между плазмой и эритроцитами происходит обмен фосфолипидами, которые играют важнейшую роль, поддерживая в растворимом состоянии неполярные липиды. Стеатоз печени и стеатогепатит — это заболевания, при которых в печеночных клетках происходит накопление жира (стеатоз) и развитие реакции воспаления и гибель клеток (стеатогепатит). Факторы риска тяжелого течения заболевания: возраст старше 45 лет; патологическое ожирение; сахарный диабет 2 типа; генетические факторы; женский пол.

16.Холестери́н — органическое соединение, природный жирный (липофильный) спирт, содержащийся в клеточных мембранах всех живых организмов за исключением безъядерных. Нерастворим в воде, растворим в жирах и органических растворителях. Около 80 % холестерина вырабатывается самим организмом, остальные 20 % поступают с пищей. В организме находится 80 % свободного и 20 % связанного холестерина. Холестерин обеспечивает стабильность клеточных мембран в широком интервале температур. Он необходим для выработки витамина D, выработки надпочечниками различных стероидных гормонов, включая кортизол,кортизон, альдостерон, женских половых гормонов эстрогенов и прогестерона, мужского полового гормона тестостерона, а по последним данным — играет важную роль в деятельности синапсов головного мозга и иммунной системы, включая защиту от рака.[2]

Биосинтез холестеринаХолестерин может как образовываться в животном организме, так и поступать с пищей. Ступени:1.Превращение трёх молекул активного ацетата в пятиуглеродный мевалонат. Происходит в ГЭПР.2.Превращение мевалоната в активный изопреноид — изопентенилпирофосфат. 3.Образование тридцатиуглеродного изопреноида сквалена из шести молекул изопентенилдифосфата.4.Циклизация сквалена в ланостерин.5.Последующее превращение ланостерина в холестерин.

Биологическая роль:Холестерин в составе клеточной плазматической мембраны играет роль модификатора бислоя, придавая ему определенную жесткость за счет увеличения плотности «упаковки» молекул фосфолипидов. Таким образом, холестерин- стабилизатор текучести плазматической мембраны. Холестерин открывает цепь биосинтеза стероидных половых гормонов и кортикостероидов, служит основой для образования жёлчных кислот и витаминов группы D, участвует в регулировании проницаемости клеток и предохраняет эритроциты крови от действия гемолитических ядов.

Ацетил-КоА+Ацетил-Коаàацетоацетил-КоаàВ-гидрокси-В-метил-глутарил-КоаàМеталоновая кислотаàланостеринàхолестерин

Регуляция: Ферментограничивающий скорость синтеза- ГМГ-КоА- редуктаза. Аллостерическим ингибиторомявляется холестерин. Инсулин стимулирует этот фермент путём дефосфорилирования.

17.КЕТО́НОВЫЕ ТЕЛА́— группа продуктов обмена веществ, которые образуются в печени из ацетил-КоА:1.ацетон (пропанон) [H3C—CO—CH3] 2.ацетоуксусная кислота (ацетоацетат) [H3C—CO—CH2—COOH]3.бета-гидроксимасляная кислота [H3C—CHOH—CH2—COOH]

Ацетон в плазме крови в норме присутствует в крайне низких концентрациях, образуется в результате спонтанного декарбоксилирования ацетоуксусной кислоты и не имеет определённого физиологического значение.Нормальное содержание кетоновых тел в плазме крови составлет 1…2 мг% (по ацетону).Кетоновые тела синтезируются в печени из ацетил-КоА: На первом этапе из двух молекул ацетил-КоА синтезируется ацетоацетил-КоА. Данная реакция катализируется ферментом ацетоацетил-КоА-тиолазой. Ac—КоА + Ac—КоА → H3C—CO—CH2—CO—S—КоА Затем под влиянием фермента оксиметилглутарил-КоА-синтазы присоединяется ещё одна молекула ацетил-КоА. H3C—CO—CH2—CO—S—КоА + Ac—КоА → HOOC—CH2—COH(CH3)—CH2—CO—S—КоА Образовавшийся β-окси-β-метилглутарил-КоА способен под действием фермента оксиметилглутарил-КоА-лиазы расщепляться на ацетоуксусную кислоту и ацетил-КоА. HOOC—CH2—COH(CH3)—CH2—CO—S—КоА → H3C—CO—CH2—COOH + Ac—КоА Ацетоуксусная кислота способна восстанавливаться при участии НАД-зависимой D-β-оксибутиратдегидрогеназы; при этом образуется D-β-оксимасляная кислота. Фермент специфичен по отношению к D-стереоизомеру и не действует на КоА-эфиры. H3C—CO—CH2—COOH + NADH → H3C—CHOH—CH2—COOH Ацетоуксусная кислота в процессе метаболизма способна окисляться до ацетона с выделением молекулы углекислого газа: H3C—CO—CH2—COOH → CO2 + H3C—CO—CH3

Биологическая роль

В плазме крови здорового человека кетоновые тела содержатся в весьма незначительных концентрациях. Однако при патологических состояниях концентрация кетоновых тел может значительно повышаться и достигать 20 ммоль/л (кетонемия). Кетонемия возникает при нарушении равновесия — скорость синтеза кетоновых тел превышает скорость их утилизации периферическими тканями организма.

Кетоновые тела — топливо для мышечной ткани, почек и действуют, вероятно, как часть регуляторного механизма с обратной связью, предотвращая излишнюю мобилизацию жирных кислот из жировых депо. Во время голодания кетоновые тела являются одним из основных источников энергии для мозга.

18.Транспортные формы липидов. в плазме крови находятся липопротеиновые частички, которые являются транспортной формой липидов в организме человека, то есть они осуществляют движение холестерина и триглицеридов по нашему организму. В тоже время, отдельные липопротеины обладают способностью захватывать избыточный холестерин из клеток периферических тканей и транспортировать его в печень, где происходит окисление его до жирных кислот и дальнейшее выведение из организма. Кроме того, липопротеины транспортируют по нашему организму жирорастворимые гормоны и витамины. Существуют несколько видов липопротеинов, которые отличаются друг от друга по степени плотности: очень низкой плотности – пре-бета-липопротеины; низкой плотности – бета-липопротеины; высокой плотности – альфа-липопротеины.

Липиды являются третьим классом органических веществ из которых состоит живой организм. Правильный качественный и количественный состав липидов клетки определяет ее возможности, активность и выживаемость. Жирнокислотный состав мембранных фосфолипидов, недостаток или избыток холестерола в мембране неизбежно влияет на деятельность мембранных белков – транспортеров, рецепторов, ионных каналов. Все это влечет за собой изменение работы клеток и, конечно, функций всего органа, как например, при инсулиннезависимом сахарном диабете. Существуют наследственные болезни накопления липидов липидозы, сопровождающиеся тяжелыми нарушениями в организме.

19. Под трансаминированием подразумевают реакции межмолекулярного переноса аминогруппы (NH2—) от аминокислоты на α-кетокислоту без промежуточного образования аммиака. замечено, что при добавлении к гомогенату мышц глутаминовой и пиро-виноградной кислот образуются α-кетоглутаровая кислота и аланин без промежуточного свободного аммиака; добавление аланина и α-кетоглу-таровой кислоты приводило к образованию соответственно пировиноград-ной и глутаминовой кислот.

Биологическое значение обмена гликогена в печени и мышцах - student2.ru

Реакции трансаминирования являются обратимыми и, как выяснилось позже, универсальными для всех живых организмов. Эти реакции протекают при участии специфических ферментов.Теоретически реакции трансаминиро-вания возможны между любой амино- и кетокислотой, однако наиболее интенсивно они протекают в том случае, когда один из партнеров представлен дикарбоновой амино- или кетокислотой. Клиническое значение определения активности трансаминаз. Широкое распространение и высокая активность трансаминаз в органах и тканях человека, а также сравнительно низкие величины активности этих ферментов в крови послужили основанием для определения уровня ряда трансаминаз в сыворотке крови человека при органических и функциональных поражениях разных органов. Для клинических целей наибольшее значение имеют две трансаминазы – аспартат-аминотрансфераза (AcAT) и аланин-аминотрансфераза (АлАТ), катализирующие соответственно следующие обратимые реакции:

Биологическое значение обмена гликогена в печени и мышцах - student2.ru

20.Реакции декарбоксилирования. Процесс отщепления карбоксильной группы аминокислот в виде СО2 получил название декарбоксилирования. В животных тканях установлено декарбоксилирование следующих аминокислот и их производных: тирозина, триптофана, 5-окситриптофана, валина, серина, гистидина, глу-таминовой и γ-оксиглутаминовой кислот, 3,4-диоксифенилаланина, цис-теина, аргинина, орнитина, S-аденозилметионина и α-аминомалоновой кислоты.

В клинической практике широко используется, кроме того, продукт α-декарбоксилирования глутаминовой кислоты – γ-аминомасляная кислота (ГАМК). Фермент, катализирующий эту реакцию (глутаматдекарбокси-лаза), является высокоспецифичным:

Биологическое значение обмена гликогена в печени и мышцах - student2.ru

Одним из хорошо изученных ферментов является декарбоксилаза ароматических аминокислот. Она не обладает строгой субстратной специфичностью и катализирует декарбок-силирование L-изомеров триптофана, 5-окситриптофана и 3,4-диоксифе-нилаланина (ДОФА); продуктами реакций, помимо СО2, являются соответственно триптамин, серотонин и диоксифенилэтиламин (дофамин)

21.Дезаминирование аминокислот. Доказано существование 4 типов дезаминирования аминокислот (отщепление аминогруппы). Выделены соответствующие ферментные системы, катализирующие эти реакции, и идентифицированы продукты реакции. Во всех случаях NH2-группа аминокислоты освобождается в виде аммиака:

Биологическое значение обмена гликогена в печени и мышцах - student2.ru

Реакция синтеза глутаминовой кислоты:

Биологическое значение обмена гликогена в печени и мышцах - student2.ru

Аланин вступает в реакцию трансаминирования. Образованный в результате реакции пируват идет в глюконеогенез или энергетический обмен. Параллельно образуется глутаминовая кислота. Пришедшая из крови или полученная при трансаминировании глутаминовая кислота дезаминируется глутаматдегидрогеназой.

22. Пути образования аммиака:

1. окислительное дезаминирование глутаминовой кислоты

2. распад пуриновых и пиримидиновых нуклеотидов, нуклеозидов, азотистых оснований.

3. окисление аминов

4. распад аминосахаридов

5 гидролиз глутамина, аспарагина

Наши рекомендации