Деструктивная переработка нефти

В результате первичной перегонки нефти из нее в виде отдель­ных фракций удается выделить вещества, которые в ней уже при­сутствовали. Деструктивные методы переработки нефти позволяют получать новые вещества, являющиеся товарными продуктами, необходимыми в различных отраслях народного хозяйства.

Термические процессы.Первоначально получили развитие тер­мические процессы переработки нефти — процессы расщепления углеводородов под влиянием теплового воздействия. В зависимос­ти от условий и назначения процессы термической переработки подразделяют на термический крекинг, пиролиз, коксование.

Термический крекинг. Термический крекинг осуществляется при температуре 470-540 °С под давлением 2—7 МПа. Термическое раз­ложение углеводородов начинается при 380-400 "С. С увеличени­ем температуры скорость крекинга сильно возрастает, поскольку процесс протекает в кинетической области. Повышение темпера­туры крекинга при постоянных давлении и степени превращения сырья приводит к увеличению содержания в продуктах легких ком­понентов, к снижению выхода тяжелых фракций и кокса. Выход газа при этом заметно возрастает, причем растет содержание в нем непредельных углеводородов.

При росте давления повышается температура кипения сырья и продуктов крекинга. Изменением давления можно влиять на фа­зовое состояние в зоне крекинга и проводить крекинг в паровой, жидкой и смешанной фазах. В паровой фазе обычно проводится крекинг бензина, керосино-газойлевых фракций. При парофазном крекинге давление существенно влияет на состав продуктов крекинга, поскольку при повышении давления увеличивается ско­рость протекания вторичных реакций — полимеризации и гидри­рования непредельных углеводородов, конденсации ароматичес­ких углеводородов и ряда других. При этом уменьшается выход газа.

Влияние давления на жидкофазный крекинг тяжелых видов сырья (мазута, гудрона) невелико. При крекинге в смешанной фазе давление способствует гомогенизации сырья — газ частично раст­воряется в жидкости, уменьшая ее плотность, а газовая фаза уп­лотняется. Следует отметить, что применение повышенных давле­ний позволяет уменьшить размеры реакционных аппаратов.

Основными продуктами термического крекинга являются угле­водородный газ — сырье для нефтехимического синтеза, крекинг-бензин, керосино-газойлевая фракция, термогазойль и крекинг-остаток. Бензины термического крекинга характеризуются низкой химической стабильностью и невысоким октановым числом (66—68). По детонационной стойкости они не соответствуют современным требованиям к горючему автомобильных двигателей. Для исполь­зования крекинг-бензина в качестве компонента автомобильного бензина необходима его дополнительная стабилизация.

Керосино-газойлевая фракция (200—250 °С) является ценным компонентом флотского мазута. После гидроочистки газойль мо­жет использоваться как компонент дизельного топлива.

Термогазойль — сырье для производства технического углерода.

Крекинг-остаток (выше 350 °С) используется в качестве котель­ного топлива для тепловых электростанций, морских судов, печей промышленных предприятий. Качество крекинг-остатка как ко­тельного топлива выше, чем у прямогонного мазута. Крекинг-ос­таток характеризуется более высокой теплотой сгорания, более низ­кими температурой застывания и вязкостью, что особенно важно, так как облегчает условия его транспортировки как котельного топли­ва по системе подводящих трубопроводов и распыл в форсунках.

Пиролиз. Пиролиз — наиболее жесткий процесс термической переработки нефти. Он проводится при температуре 700—1000°С и давлении, близком к атмосферному, и предназначается для по­лучения высокоценных низших алкенов (олефиновых углеводоро­дов) — сырья нефтехимического синтеза.

Наилучшим видом сырья для получения алкенов в процессе пиролиза являются алканы. При расщеплении нормальных алка­нов имеют место следующие закономерности: этан почти полнос­тью превращается в этилен; из пропана и бутана с большим выхо­дом образуются этилен и пропилен, из углеводородов с числом углеродных атомов больше четырех получаются этилен, пропилен и алкены С4 и выше. При пиролизе изоалканов выход этилена меньше: образуется больше газообразных алканов и в особенности метана. Арены при умеренных температурах являются балластом, а при более жестких условиях в значительной степени преобразу­ются в кокс и смолу.

Глубину процесса пиролиза определяют температура, время контакта, давление. Для пиролиза благоприятна высокая темпера­тура. Так, при пиролизе пропана с повышением температуры рас­тет выход этилена и пропилена. Выход пропилена достигает мак­симума при более низкой температуре, что позволяет регулировать в продуктах соотношение этилена и пропилена. Соотношение эти­лена и пропилена можно также регулировать, изменяя время кон­такта. Получивший в последние годы широкое распространение пиролиз в жестких условиях (температура выше 800 °С, время кон­такта 0,3—0,4 с) обеспечивает высокий выход этилена.

Давление сильно влияет на пиролиз углеводородов: при по­вышении давления содержание алкенов уменьшается, а содержа­ние н-алканов и ароматических углеводородов увеличивается. Обычно давление на выходе из змеевика печи пиролиза составляет 0,03—0,12 МПа, однако желательно работать при еще более низ­ком давлении. Чтобы снизить парциальное давление углеводоро­дов, разбавляют сырье водяным паром и используют в печи змее­вики специальной конфигурации. При разбавлении сырья водяным паром значительно растет выход этилена; кроме того, уменьшается коксообразование на стенах труб и увеличивается скорость движения газосырьевой смеси в печи.

Появилось довольно много новых разновидностей пиролиза: с применением катализаторов и инициаторов, в присутствии во­дорода (гидропиролиз), в расплавленных теплоносителях.

Коксование. Процесс глубокого разложения нефтяных фракций без доступа воздуха с целью получения нефтяного кокса и дистил­лята широкого фракционного состава называют коксованием. Кок­сование позволяет утилизировать с превращением в светлые нефтепродукты не только прямогонные остатки — мазуты, полугудроны, гудроны, но и такие продукты, как асфальты и экстрак­ты масляного производства. Из высоковязких остатков наряду с беззольным нефтяным коксом получают газ, бензин, дизельное и котельное топливо.

Нефтяной кокс применяют в качестве восстановителя в хими­ческой технологии, для приготовления анодов в металлургии и т.д.

Наши рекомендации