Глюкозолактатный цикл – цикл Кори

Глюкозолактатный цикл начинается с образования лактата в мышцах в результате анаэробного гликолиза (особенно в белых мышечных волокнах, в которых митохондрий меньше, чем в красных). Лактат переносится кровью в печень, где в процессе глюконеогенеза превращается в глюкозу, которая затем с током крови может возвращаться в работающую мышцу. Таким образом, печень снабжает мышцу глюкозой и, следовательно, энергией для сокращений. В печени часть лактата может окисляться до СО2 и Н2О, превращаясь в пируват и далее в общих путях катаболизма.

Таким образом, вся имеющаяся в организме глюкоза в конечном счете окисляется до СО2 и Н2О аэробным путем. Анаэробный распад служит вспомогательным путем использования энергии глюкозы, например, в эритроцитах или временно, в работающей мышце. Продукт анаэробного распада – молочная кислота – в конечном счете тоже окисляется аэробным путем.

Глюкоза может синтезироваться не только из лактата, но и из других веществ, способных превращаться в пируват, ЩУК, глицеральдегидрофосфат.

Кроме синтеза глюкозы из молочной кислоты важное значение имеет глюконеогенез из глицерина и аминокислот.

При голодании, когда усиленно потребляются в качестве источников энергии жирные кислоты, в большом количестве образуется глицерин, который активируясь с помощью АТФ, под действием глицерокиназы превращается в α-глицерофосфат, а затем окисляется под действием глицерофосфатдегидрогеназы в фосфодиоксиацетон – субстрат гликолиза:

Написать реакции.

Фосфодиоксиацетон используется в синтезе глюкозы.

Регуляторами глюконеогенеза являются глюкокортикоиды. С одной стороны, они оказывают катаболическое действие на мышечную ткань, что приводит к увеличению поступления аминокислот в кровоток; с другой стороны, они индуцируют биосинтез ферментов глюконеогенеза в печени (анаболический эффект гормонов), благодаря чему поступившие в печень аминокислоты могут использоваться для синтеза глюкозы.

На регуляцию глюконеогенеза оказывают влияние, противоположное по действию, гормоны поджелудочной железы – глюкагон и инсулин. Глюкагон ингибирует гликолиз и активирует процесс глюконеогенеза в печени путем увеличения концентрации цАМФ, которая вызывает фосфорилирование пируваткиназы – фермента гликолиза. Но так как фосфорилированная пируваткиназа неактивна, гликолиз прекращается; соответственно активируются ферменты глюконеогенеза.

Таким образом, глюкагон является индуктором синтеза ферментов глюконеогенеза и одновременно ингибитором ключевых ферментов гликолиза. Инсулин является индуктором синтеза глюкокиназы, фосфофруктокиназы и пируваткиназы (ключевые ферменты гликолиза) и одновременно – ингибитором пируваткарбоксилазы, фосфоенолпируваткарбоксикиназы, фруктозо-1,6-бисфосфатазы, глюкозо-6-фосфатазы (ключевые ферменты глюконеогенеза).

Ферменты, катализирующие главные реакции гликолиза и глюконеогенеза, являются аллостерическими белками, и их регуляция происходит по принципу «обратной связи» под влиянием аллостерических эффекторов.

Скорость гликолиза и глюконеогенеза зависит от энергетического статуса клетки. Высокие концентрации АТФ и НАДН ингибируют гликолиз и, тем самым, предотвращается дальнейшее накопление этих веществ. Поскольку при высокой концентрации АТФ концентрации АДФ и АМФ будут низкими, то ингибирование карбоксилазы и фруктозо-1,6-бисфосфатазы прекращается и скорость глюконеогенеза увеличивается. Высокие концентрации АДФ и АМФ, наоборот, стимулируют гликолиз и подавляют глюконеогенез.

Углеводный обмен может нарушаться вследствие многих причин.

Возможны наследственные нарушения обмена фруктозы вследствие дефектов двух ферментов.

1) При дефекте фруктокиназы печени нарушается фосфорилирование фруктозы, и развивается заболевание эссенциальная фруктозурия, которая проявляется повышением фруктозы в крови (фруктоземия) и выделением её с мочой (фруктозурия). Заболевание протекает бессимптомно, так как энергетическое обеспечение клеток осуществляется глюкозой и не страдает.

2) Возможен генетический дефект выработки альдолазы фруктозо-1-фосфата, что приводит к развитию непереносимости фруктозы – заболеванию фруктоземии. Оно проявляется судорогами, рвотой, гипогликемией, поражением печени и почек. Заканчивается смертельным исходом.

Гипогликемия является следствием ингибирования фруктозо-1-фосфатом, накапливающимся в крови и тканях, ферментов фосфорилазы гликогена, альдолазы фруктозо-1,6-бисфосфата, фосфоглюкомутазы, т.е. нарушается энергообеспечение клеток.

Болезнь обычно обнаруживается после перехода с грудного кормления на пищу, содержащую сахарозу, и проявляется приступами рвоты и судорог после еды. При устранении фруктозы из рациона дети развиваются нормально.

При генетическом дефекте гексозо-1-фосфатуридилтрансферазы развивается заболевание галактоземия. У больных при этом заболевании в крови увеличивается содержание сахара, но не за счет глюкозы, а за счет галактозы (до 11-16 ммоль/л), в крови накапливается галактозо-1-фосфат, развивается галактозурия, происходит накопление галактозы в тканях, рвота, понос, цирроз печени, поражение почек, у детей болезнь обнаруживается с первых дней кормления ребенка грудью, проявляется в отказе от еды, рвоте, поносе. Ребенок отстает в уственном развитии. Характерным для галактоземии является развитие катаракты. Эти глубокие расстройства могут привести к смерти.

Токсическое действие галактозо-1-фосфата связано с ингибированием им фосфоглюкомутазы (нарушение энергообеспечения клеток, и прежде всего, нервных) и образованием спирта галактитола, вызывающего катаракту.

Исключение молока из диеты больных и замена его соевым устраняет накопление галактозы.

Наши рекомендации