Характеристики кристаллических решеток

Ю.Г. Дорофеев, В.И. Устименко, В.А. Червоный

МАТЕРИАЛОВЕДЕНИЕ

Учебное пособие для дистанционного обучения

Новочеркасск 2007

ОГЛАВЛЕНИЕ    
1. КРИСТАЛЛИЧЕСКОЕ СТРОЕНИЕ МЕТАЛЛОВ  
1.2. Дефекты кристаллического строения металлов  
2. ТЕОРИЯ СПЛАВОВ  
2.1. Кристаллизация металлов  
2.2. Виды сплавов  
2.3. Диаграммы состояния  
3. ПЛАСТИЧЕСКАЯ ДЕФОРМАЦИЯ И МЕХАНИЧЕСКИЕ СВОЙСТВА  
4.ЖЕЛЕЗО И ЕГО СПЛАВЫ  
5. КЛАССИФИКАЦИЯ И МАРКИРОВКА СТАЛЕЙ И СПЛАВОВ  
6. ТЕОРИЯ ТЕРМИЧЕСКОЙ ОБРАБОТКИ  
7. ИНСТРУМЕНТАЛЬНЫЕ МАТЕРИАЛЫ  
8. ЦВЕТНЫЕ МЕТАЛЛЫ И СПЛАВЫ  
9. МЕТАЛЛЫ И СПЛАВЫ С ОСОБЫМИ СВОЙСТВАМИ  
БИБЛИОГРАФИЧЕСКИЙ СПИСОК  
ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ  

КРИСТАЛЛИЧЕСКОЕ СТРОЕНИЕ МЕТАЛЛОВ

Для металлов характерно кристаллическое строение. Взаимное расположение атомов в пространстве представляет кристаллическую решетку. Положительно заряженные ионы расположены в узлах кристаллической решетки и совершают колебания около своего среднего положения. Отрицательно заряженные электроны перемещаются вокруг ионов, образуя электронный газ. Наименьший объем кристалла, повторение которого в пространстве воспроизводит кристалл, называется элементарной кристаллической ячейкой.

Металлы имеют сложные кристаллические решетки, у которых атомы находятся не только в вершинах многогранника, но и внутри него. Наиболее характерны для металлов: кубическая объемно-центрированная (ОЦК), кубическая гранецентрированная (ГЦК), гексагональная плотно упакованная (ГПУ) и тетрагональная, представляющая собой параллелепипед и характерная для металлов в закаленном состоянии (рис.1.1).

 
  Характеристики кристаллических решеток - student2.ru

а) б) в) г)

Рис. 1.1. Кристаллические ячейки: а – ОЦК; ‑ б – ГЦК; в – ГПУ;

г ‑ тетрагональная

В решетке ОЦК атомы находятся в вершинах куба и внутри него на пересечении пространственных диагоналей. В решетке ГЦК атомы расположены в вершинах куба и на пересечении диагоналей каждой грани. В решетке ГПУ атомы находятся в вершинах шестигранной призмы, в центре ее оснований, а также три атома находятся внутри призмы.

Для ряда металлов характерно явление полиморфизма или аллотропии, которое характеризуется существованием одного и того же элемента в разных кристаллических состояниях при разных температурах. Например, для железа характерны полиморфные превращения: α, γ и δ. Для α-Fe характерна решетка ОЦК и оно существует в интервале температур от 0 до 911 ºС, γ-Fe имеет решетку ГЦК и существует в интервале температур 911–1400 ºС, δ-Fe имеет решетку ОЦК, существует в интервале температур 1400­1539 ºС и называется высокотемпературной модификацией α-Fe. При полиморфных превращениях свойства металлов меняются скачком.

Характеристики кристаллических решеток

Важными характеристиками кристаллической решетки являются период, координационное число, коэффициент компактности. Период решетки – это расстояние между двумя ближайшими соседними атомами. Кристаллическая решетка характеризуется параметрами a, b, c и углами между координатными осями – α (между осями x и z), β (между y и z), γ (между (x и y).

Координационное число – это число атомов, находящихся в кристаллической решетке на равном наименьшем расстоянии от данного атома. Каждый атом простой кубической решетки имеет 6 ближайших соседей, расположенных на расстоянии длины ребра куба (периода решетки). Координационное число такой решетки обозначают К6. В ОЦК решетке у каждого атома 8 ближайших соседей и координационное число равно 8 (К8). В ГЦК и ГПУ решетках каждый атом имеет 12 ближайших соседних атомов, соответственно координационные числа К12 и Г12.

Коэффициент компактности – это отношение объема атомов, приходящихся на элементарную кристаллическую ячейку, ко всему объему ячейки. Коэффициент компактности простой кубической решетки равен 52 %, ОЦК– 68 %, ГЦК – 74 % , ГПУ – 74 %.

Многократное повторение в пространстве кристаллографических плоскостей (плоскостей, проходящих через определенные группы атомов кристаллической решетки) воспроизводит кристалл. Пространственное расположение кристаллографических плоскостей и направлений характеризуется индексами.

Для монокристаллов характерна анизотропия свойств, т.е. неодинаковость свойств в разных кристаллографических направлениях, что вызывается разной плотностью упаковки атомов в направлениях испытания. Поликристаллические тела состоят из многих зерен. В отдельно взятом зерне наблюдается анизотропия, но поскольку ориентация кристаллографических плоскостей решетки в разных зернах различна, то по всему объему материала свойства выравниваются, т.е. реальные металлы являются изотропными. Поскольку их изотропность является не истинной, а усредненной, то их принято называть квазиизотропными. Для металлов, подвергнутых обработке давлением и имеющих волокнистую структуру, т.е. текстуру – направленное расположение волокон, характерна анизотропия свойств.

Наши рекомендации