Глава 10. Химия радиоактивных элементов 3 страница
В свою очередь отдельные группы актиноидов объединяют в подгруппы: все элементы следующие за ураном называют трансурановыми элементами, элементы, следующие за америцием, называют трансамерициевыми элементами и т.д.
В процессе рассмотрения химии тяжелых элементов – тория, протактиня, урана и трансурановых элементов Глен Сиборг в 1946 г. выдвинул актиноидную теорию. В соответствии с этой теорией элементы с порядковыми номерами 89-103 образуют 5f –семейство и по аналогии с лантаноидами размещаются в периодической системе в виде отдельной группы.
В настоящее время имеется много доказательств справедливости актиноидной гипотезы (электронные конфигурации атомов, спектры и магнитные свойства актиноидных и лантаноидных элементов). Согласно актиноидной теории Сиборга всего в слое 5 f может находиться 14 электронов. Следовательно,103-й элемент должен быть последним актиноидом, так как у него будут полностью застроены уровни 5f, 6s и 6p. С другой стороны, следует ожидать, что 104-й элемент будет находиться в состоянии 6d2 7s2, т.е. относиться к четвертой группе системы Менделеева, следовательно, по своим свойствам он должен быть похож на торий.
Рис. Глен Сиборг
По своему химическому поведению актиноиды занимают промежуточное положение между f - и d- элементами. Этим объясняется большое многообразие валентных состояний у актиноидов по сравнению с соответствующими лантаноидами. Последнее объясняет двойственность химического поведения легких актиноидов. По мере заполнения электронами 5f-подуровня относительная энергия 5f-электронов уменьшается и становится меньше энергии 6 d -подуровня. При этом уменьшается разнообразие валентных форм тяжелых актиноидов, которые все в большей степени проявляют свойства присущие лантаноидам. Особенно отчетливо своеобразие химических свойств проявляется у элементов от актиния до кюрия. Для элементов от урана до америция характерно наибольшее разнообразие степеней окисления.
Актиноиды в степени окисления +3 являются химическими аналогами лантаноидов, но обладают более сильно выраженной способностью к комплексообразованию.
Актиноиды в степени окислении +4 являются химическими аналогами тория и церия (1У) в большей степени, чем гафения и циркония. В степени окисления +4 эти элементы являются сильными комплексообразователями.
В степени окисления +5 все рассматриваемые элементы существуют в виде диоксиионов состава МеО .
В степени окисления +6 все рассматриваемые элементы находятся в виде диоксиионов состава МеО . Для урана эта степень является наиболее устойчивой. Степнь окисления +7 характерна для нептуния, плутония, америция.
С учетом вышеизложенного химические свойства актиния, тория и протактиния, урана будут рассмотрены отдельно, свойства более тяжелых актиноидов – по группам.
Основным источникомполучения природных изотопов элементов отактиния до урана включительно являются руды, содержащие уран и торий.
Методы искусственного получения актиноидов можно разделить на две группы.
Первая группа методов –облучение тория, урана и более тяжелых элементов нейтронами. Ядерные реакции, лежащие в основе этих методов, представляют собой многократно повторяющуюся реакцию радиационного захвата ядром нейтрона (n,g) c последующим бета-распадом ( реакторный метод). Этим методом могут быть получены только изотопы с избытком нейтронов. Облучение нейтронами может осуществляться в ядерных реакторах с высокой интенсивностью потока нейтронов ( 1013 – 1015 н/см2·с).
Получение трансурановых элементов в ядерном реакторе является единственным методом их промышленного производства.
Первая попытка синтеза трансурановых элементов относится к 1934 г. когда Э. Ферми провел серию работ по облучению урана медленными нейтронами. Однако выделить элементы 93 и 94 в этих исследованиях не удалось. Открытие первых шести трансурановых актиноидов впервые было осуществлено группой Глена Сиборга в Беркли (США) в период с 1940 по 1950 г. Они были получены облучением урана нейтронами.
238U (n,g ) 239U 239Np 239Pu
С увеличением атомного номера и массового числа синтезируемого элемента резко уменьшается его выход. Самый тяжелый элемент, который может быть получен реакторным методом– Fm. Однако накопить этот изотоп в ядерном реакторе невозможно, из-за того , что время, необходимое для присоединения нейтрона по реакции
257Fm (n,g ) 258Fm
значительно больше, чем период спонтанного деления образующегося продукта 258Fm ( Т ½ =3.8∙10-4 с).
Вторая группа методов получения трансурановых элементов состоит в облучении урана и более тяжелых элементов заряженными частицами с использованием ускорителей различных типов (ускорительный метод). Использование в качестве бомбардирующих ускоренных ионов дейтерия и гелия позволяет получить элементы вплоть до менделевия:
; ; Es (a,n) Md
По своему химическому поведению актиноиды занимают промежуточное положение между элементами f - и d- серий. Этим объясняется большое многообразие валентных состояний у актиноидов по сравнению с соответствующими лантаноидами.
Основная степень окисления лантаноидов +3. Актиноиды благодаря меньшей энергии связи электронов на 5 f-уровне по сравнению с 4 f –электронами у лантаноидов и наличию у первых актиноидного ряда 6 d-электронов проявляют ряд степеней окисления. Степень окисления +3 не обнаружена у тория и не характерна для протактиния, мало устойчива для урана и нептуния, легко переходит в +4 для плутония. Начиная с америция, степнь окисления +3 является наиболее устойчивой. У калифорния и следующих за ним актиноидов появляется степень окисления +2, устойчивость которой растет от кюрия до менделевия. Для последнего она является наиболее устойчивой степенью окисления.
В таблице приведены степени окисления актиноидов в растворе
Таблица
Элемент | |||||
Ac | Cm | 3,4 | |||
Th | (3),4 | Bk | 3,4 | ||
Pa | 4, 5 | Cf | 2,3,4 | ||
U | 3, 4, 5, 6 | Es | 2, 3 | ||
Np | 3, 4, 5, 6, 7 | Fm | 2, 3 | ||
Pu | 3, 4,5, 6 ,7 | Md | 1, 2, 3 | ||
Am | 2, 3, (4),5, 6 ,7 | No | 2, 3 | ||
Lr |
У лантаноидов в образовании связи участвуют d- и s -электроны. Переход с уровня 4f на 5d у них затруднен, требует значительной энергии, поэтому у лантаноидов степени окисления выше +3 осуществляются с трудом и лишь для некоторых лантаноидов. Переходы актиноидов из состояния окисления +3 и +4 в состояние окисления +5 и +6 затруднены по сравнению с переходами +3 в +4 и +5 в +6 вследствие изменения структуры иона, например,
Me4+ + 2H2O MeO + 4H++ 2e-
Актиноиды – активные металлы, легко вступающие в реакции практически со всеми химическими элементами с образованием соответствующих соединений. Их химическая активность растет с увеличением атомного номера.
В растворе актиноиды образуют гидратированные ионы вида:
Ме2+[Cf– No]
Ме3+[Ac –Lr]
Ме4+(Th, U– Cf; Am, Cm и Cf только в виде комплексных ионов)
МеО (U – Am)
МеО (U – Am)
МеО или (МеО5· nH2O) 3 (Np, Pu, Am)
Ионы актиноидных элементов имеют небольшой размер и значительный заряд.
Ионные радиусы актиноидов, подобно лантаноидам, падают с ростом порядкового номера (табл.). Вследствие этого в водных растворах они гидролизованы. Не гидролизованные трех- и четырехзарядные ионы актиноидов существуют только в достаточно кислых растворах в отсутствие лигандов, имеющих большое сродство к катионам, практически в среде HClO4.
Они гидратированы и имеют состав Me(H2O) и Me(H2O) . В других кислотах начинается комплексообразование. Гидролиз протекает по схеме
Me (H2O) + m H2O Me(OH)m(H2O)
Аналогично протекает и комплексообразование
Me (H2O) + mАу-
Таблица Ионные радиусы актиноидов
Ион | Радиус, нм | Ион | Радиус, нм | Ион | Радиус,нм |
Ас3+ | 1.071 | Bk3+ | 0.975 | - | - |
Th3+ | 1.051 | Cf3+ | 0.962 | Th4+ | 0.984 |
Pa3+ | 1.034 | Es3+ | 0.953 | Pa4+ | 0.944 |
U3+ | 1.022 | Fm3+ | 0.943 | U4+ | 0.929 |
Np3+ | 1.011 | Md3+ | 0.934 | Np4+ | 0.913 |
Pu3+ | 1.001 | No3+ | 0.928 | Pu4+ | 0.896 |
Am3+ | 0.993 | Lr3+ | 0.921 | Am4+ | 0.888 |
Cm3+ | 0.985 | Cm4+ | 0.886 | ||
Bk4+ | 0.870 |
10.8.2 АКТИНИЙ (89Ас)
Ac Aктиний Actinium | [Rn] 7s2 6d1 |
1899 году сотрудник Кюри Дебьерн в редкоземельной фракции отходов от переработки урановой смоляной руды обнаружил новое радиоактивное вещество. При химико-аналитическом разделении это радиоактивное вещество осаждалось аммиаком вместе с редкоземельными элементами и торием. Радиоактивность была приписана новому радиоактивному элементу, который был назван актинием ( излучающий).
Есть лишь одна причина, по которой элемент № 89 – актиний - интересует сегодня многих. Этот элемент, подобно лантану, оказался родоначальником большого семейства элементов - актиноидов.В это семейство входят все три кита ядерной энергетики – уран, плутоний и торий.
И так, согласно актиноидной теории Г. Сиборга, актиний– первый член семейства актиноидных элементов и, следовательно, налог лантана. Электронная конфигурация актиния в основном состоянии предполагается следующей: 6s6p6 6d1 7s2.
В настоящее время известно 24 изотопа актиния, три из них встречаются в природе( Ac , Ac Ac). Остальные изотопы получены искусственным путем.
Радиоактивные свойства некоторых изотопов актиния:
Изотоп актиния | Реакция получения | Тип распада | Период полураспада |
221Ac | 232Th(d,9n)225Pa(б)→221Ac | б | <1 сек. |
222Ac | 232Th(d,8n)226Pa(б)→222Ac | б | 4,2 сек. |
223Ac | 232Th(d,7n)227Pa(б)→223Ac | б | 2,2 мин. |
224Ac | 232Th(d,6n)228Pa(б)→224Ac | б | 2,9 час. |
225Ac | 232Th(n,г)233Th(в-)→233Pa(в-) 233U(б)→229Th(б)→225Ra(в-)→225Ac | б | 10 сут. |
226Ac | 226Ra(d,2n)226Ac | б или в- или электронный захват | 29 час. |
227Ac | 235U(б)→231Th(в-)→231Pa(б)→227Ac | б и в- | 21,7 лет |
228Ac | 232Th(б)→228Ra(в-)→228Ac | в- | 6,13 час. |
229Ac | 228Ra(n,г)229Ra(в-)→229Ac | в- | 66 мин. |
230Ac | 232Th(d,б)230Ac | в- | 80 сек. |
231Ac | 232Th(г,p)231Ac | в- | 7,5 мин. |
232Ac | 232Th(n,p)232Ac | в- | 35 сек. |
Главный и долгоживущий изотоп актиния - Ac (период полураспада 22 года) является дочерним продуктом 235U.
В урановых рудах актиний содержится в микроконцентрациях. В равновесии с 1 природного урана находится ~ 10-10 г Ac. Актиний может быть выделен из урановых и ториевых рудпутем осуществления кислотного разложения руды с последующим разделением и выделением продуктов распада урана и тория и отделения актиния от примесей с лантаноидами. От лантана актиний может быть отделен хроматографически на катионите в аммонийной форме или методом электрофореза.
Количество получающегося актиния настолько мало, что этот элемент входит в десятку редчайших элементов.
Из – за очень малого содержания актиния в рудах его предпочитают получать искусственным путем, обычно облучением радия мощным потоком нейтронов:
Ra ( n,g) Ra → Ac
Именно этим путем получены чистые препараты актиния, на которых и были определены его основные свойства.
От радия актиний отделяют после растворения мишени в НСl довольно просто – экстракциейв раствор тиофенилкарбонила - трифторацетона в хлороформе при рН~3,6. Далее актиний осаждают в виде Ac2(С2О4)3, растворяют в соляной кислоте и плавиковой кислотой переводят в AcF3. Затем в вакууме при 12000С полученную соль восстанавливают металлическим литием до металла.
Элементарный актиний довольно тяжелый серебристо-белый металл, который легко окисляется на воздухе с образованием пленки оксида, предохраняющей металл от дальнейшей коррозии. Температура плавления актиния 10500С.
Актиний находится в главной подгруппе третьей группы периодической системы. Основные сведения о химических свойствах актиния получены при исследовании образцов, содержащих микроколичества элемента. Электронная структура атома отвечает схеме 6d17s2 . Его ближайшим химическим аналогом является лантан. У него, как и у лантана такая же валентность (+ 3), близкие атомные радиусы (1,87 нм у лантана и 2,03 нм у актиния), почти идентичное строение большинства соединений. Актиний подобно лантану химически активный элемент, быстро окисляющийся на воздухе. В то же время он имеет более основные свойства, чем лантан. В кислых растворах актиний присутствует в виде ионов. При рН>3 образуются коллоидные растворы. В микроконцентрациях актиний соосаждается гидроокисями иттрия, алюминия, железа.
Области применения изотопов актиния основаны на их ядерных характеристиках.
227Ac в смеси с бериллием является источником нейтронов. Ac-Be-источники характеризуются малым выходом гамма – квантов и применяются в активационном анализе при определении Mn, Si, Al в рудах. Кроме того 227Ac может использоваться в радиоизотопных источниках энергии.
225Ac применяется для получения 213Bi, а также в радио-иммунотерапии.
228Ac применяют в качестве радиоактивного индикатора в химических исследованиях из-за его высокоэнергетического в-излучения. Смесь изотопов 228Ac-228Ra используют в медицине как интенсивный источник г-излучения
Актиний относится к числу опасных радиоактивных ядов с высокой удельной б-активностью. Хотя абсорбция актиния из пищеварительного тракта по сравнению с радием сравнительно невелика, но наиболее важной особенностью актиния является его способность прочно удерживаться в организме в поверхностных слоях костной ткани. Первоначально актиний в значительной степени накапливается в печени, причём скорость его выведения из организма много больше скорости его радиоактивного распада. Кроме того, одним из дочерних продуктов его распада является очень опасный радон, защита от которого при работе с актинием является отдельной серьёзной задачей.
Th Торий Thorium | [Rn] 7s2 6d2 |
10.8.3 ТОРИЙ (90TH)
Элемент № 90 был открыт обычным химическим методом в 1828 г. Яном Берцелиусом и назван ториемв честь древнескандинавского божества Тора. Радиоактивность тория была обнаружена в 1898 г. М. Кюри и одновременно с ней независимо немецким ученым Г. Шмидтом. Именно радиоактивность - основная причина нынешнего интереса к элементу № 90. Природный элемент практически представляет собой изотоп 232Th. Торий-232 является родоначальником довольно большого семейства. Период полураспада тория-232 равен 1,39·1010лет.
Электронная конфигурация атома тория 6d2 7s2.
Основными источниками тория являются торийсодержащие минералы (монацит, ортит). Методы выделения тория предусматривают отделение его от сопутствующих редкоземельных элементов. В технологии для этой цели используется, в основном, экстракция тория ТБФ(трибутилфосфатом) после его отделения от основной массы редкоземельных элементов дробным осаждение менее растворимого сульфата тория.
В периодической системе 232Th расположен в четвертой группе. Торий - серебристо-белый блестящий металл, стойкий к окислению в чистом виде, но обычно медленно тускнеющий до темного цвета с течением времени. Чистый торий - мягкий, очень гибкий и ковкий, с ним можно работать непосредственно (холодный прокат, горячая штамповка и т.п.), однако его протяжка затруднительна из-за низкого предела прочности на разрыв.
Порошок металлического тория пирофорен поэтому обращаться с ним нужно с осторожностью. При нагреве в воздухе он загорается и горит ярким белым светом. Это свойство тория было использовано в начале прошлого века для изготовления ториевых ламп.
Рис. Ториевая лампа
Торий медленно разрушается водой, но плохо растворяется в основных кислотах, за исключением соляной. Он малорастворим в серной и азотной кислотах.
При сильном нагреве торий взаимодействует с галогенами, серой и азотом.. Он очень легко окисляется, поэтому его хранят под слоем керосина.
Химические свойства тория изучены методами классической химии. Торий способен проявлять степени окисления +4, +3, +2, наиболее устойчивой является +4. Ион Th+4 обладает большим зарядом, относительно малым радиусом и большим числом At At рироде.
Протактиний почти одновременно обнаружили О. Ган и Л. Мейтнер в Германии и Ф. Содди и Дж. Кренстон в Англии.
Рис. Лиза Мейтнер Рис. Фредерик Содди
Новый радиоактивный элемент был обнаружен при переработке минералов урана точно так же, как полоний, радий, актиний. Это был самый долгоживущий изотоп элемента № 91– протактиний-231 с периодом полураспада 35000 лет. Протактиний образуется в результате распада урана-235 по схеме:
U Ac
В природе он находится в таких же количествах, как и радий ( 340 мг на 1 т урана). Поэтому протактиний принадлежит к числу наименее распространенных элементов на Земле. Кроме протактиния-231 в природе существует протактиний-234. Он также продукт распада урана, но период его полураспада очень мал.
Кроме этих двух изотопов протактиния, сейчас известны еще 17 изотопов с массовыми числами от 216 до 238 и периодами полураспада от долей секунды до нескольких дней. Изотоп (Т ½= 27 дней) обычно получают при нейтронном облучении тория по схеме:
Протактиний –самый неактиноидный актиноид. По своим свойствам он сходен с Nb, Ta, Zr, Hf, Ti.Это блестящий металл светло-серого цвета, покрытый на воздухе тонкой пленкой монооксида. По твердости протактиний близок к урану. Интересным свойством протактиния является его сверхпроводимость при 2˚ К. Электроння конфигурация атома протактиния 5f2 6d1 7s2.
Металлический протактиний может быть получен термическим разложением его галогенидов на вольфрамовой нити при высокой температуре и давлении 10-3 – 10-4 Па. Изучение химии протактиния осуществлялось методами классической химии с использованием долгоживущего изотопа . Протактиний легко реагирует с водородом при 250-300оС, образуя гидрид PaH3. С иодом образует летучие иодиды сложного состава. Степени окисления протактиния +5, +4,+3,+2, из которых наиболее устойчивой является +5. Протактиний в степени окисления +5 в большей мере является аналогом тантала и ниобия, чем соседних актиноидов (урана, нептуния, плутония). Для протактиния (+5) в водных растворах характерна очень большая склонность к гидролизу и полимеризации с образованием коллоидных форм. В ионной и молекулярной формах (+5) существует только в концентрированных растворах сильных минеральных кислот или в растворах, содержащих комплексующие агенты.
Основными методами выделения протактиния являются соосаждение, экстракция и хроматография. Наилучшими носителями являются фосфат циркония и гидроксид марганца (1У).
применяется как источник получения и по реакции (n,г)
(Т ½ =73.6 ч) - используется как автономный изотопный источник тока, используется в качестве ядерного топлива.
Протактиний и его соединения чрезвычайно радиоактивны и радиотоксичны. Сравнительное количество протактиния в 250 миллионов раз токсичнее такого же количества синильной кислоты.
231Pa в организме человека склонен накапливаться в почках и костях. ПДК для 231Pa в воздухе рабочих помещений 5,6·10−4 Бк/м³. Максимальное безопасное количество протактиния при попадании в организм человека составляет 0.03 мккюри, что соответствует 0.5 мкг.
10.8.5 УРАН (92U)
U Уран Uranium | [Rn] 7s2 5f3 6d1 |