Классификация полимеров и их свойства.

Полиме́ры (греч. πολύ- — много; μέρος — часть) — неорганические и органические, аморфные и кристаллические вещества, состоящие из «мономерных звеньев», соединённых в длинные макромолекулы химическими или координационными связями

Классификация:

По химическому составу все полимеры подразделяются на органические, элементоорганические, неорганические.

Органические полимеры.

Элементоорганические полимеры. Они содержат в основной цепи органических радикалов неорганические атомы (Si, Ti, Al), сочетающиеся с органическими радикалами. В природе их нет. Искусственно полученный представитель — кремнийорганические соединения.

Неорганические полимеры. Они не содержат в повторяющемся звене связей C-C, но способны содержать органические радикалы, как боковые заместители.

Следует отметить, что в технике полимеры часто используются как компоненты композиционных материалов, например, стеклопластиков. Возможны композиционные материалы, все компоненты которых — полимеры (с разным составом и свойствами).

По форме макромолекул полимеры делят на линейные, разветвлённые (частный случай — звездообразные), ленточные, плоские, гребнеобразные, полимерные сетки и так далее.

Полимеры подразделяют по полярности (влияющей на растворимость в различных жидкостях). Полярность звеньев полимера определяется наличием в их составе диполей — молекул с разобщённым распределением положительных и отрицательных зарядов. В неполярных звеньях дипольные моменты связей атомов взаимно компенсируются. Полимеры, звенья которых обладают значительной полярностью, называют гидрофильными или полярными. Полимеры с неполярными звеньями — неполярными, гидрофобными. Полимеры, содержащие как полярные, так и неполярные звенья, называются амфифильными. Гомополимеры, каждое звено которых содержит как полярные, так и неполярные крупные группы, предложено называть амфифильными гомополимерами.

По отношению к нагреву полимеры подразделяют на термопластичные и термореактивные. Термопластичные полимеры (полиэтилен, полипропилен, полистирол) при нагреве размягчаются, даже плавятся, а при охлаждении затвердевают. Этот процесс обратим. Термореактивные полимеры при нагреве подвергаются необратимому химическому разрушению без плавления. Молекулы термореактивных полимеров имеют нелинейную структуру, полученную путём сшивки (например, вулканизация) цепных полимерных молекул. Упругие свойства термореактивных полимеров выше, чем у термопластов, однако, термореактивные полимеры практически не обладают текучестью, вследствие чего имеют более низкое напряжение разрушения.

Природные органические полимеры образуются в растительных и животных организмах. Важнейшими из них являются полисахариды, белки и нуклеиновые кислоты, из которых в значительной степени состоят тела растений и животных и которые обеспечивают само функционирование жизни на Земле.

Свойства полимеров:

Свойства полимеров определяются не только химическим составом молекул, но и их взаимным расположением и строением. От формы макромолекул зависят такие свойства, как эластичность, прочность, реакция на нагревание, химическая стойкость и т.д. Так, линейные полимеры характеризуются высокой эластичностью, обратимо размягчаются и затвердевают при тепловом воздействии, многие из них хорошо растворяются в растворителях. Из линейных полимеров получают волокна, плёнки (полиэтилен, полиамиды и др.). Разветвлённые полимеры (полиизобутилен) имеют низкую прочность, хорошо растворяются в растворителях. Ленточные полимеры (кремнийорганические) обладают повышенной прочностью и теплостойкостью по сравнению с линейными, не растворяются в стандартных органических растворителях. Редкосетчатые полимеры (мягкие резины) теряют способность растворяться и плавиться, но обладают высокой эластичностью; густосетчатые имеют высокую твёрдость, повышенную термостойкость, нерастворимость.

В зависимости от температуры полимер может находиться в трёх различных состояниях: стеклообразном (застеклованном), высокоэластическом и вязкотекучем. Состояние полимера определяет его свойства, в частности, механические.

Так, при низких температурах у застеклованного полимера тепловое движение молекул недостаточно для преодоления межмолекулярных сил, и при нагружении он ведёт себя как упругое твёрдое тело – переориентации частиц в направлении приложенной силы не происходит. При быстром нагружении произойдёт хрупкое разрушение.

При превышении определённой температуры (температуры стеклования), кроме теплового движения молекул, будет наблюдаться подвижность звеньев и сегментов макромолекул. Поэтому под действием напряжений, кроме упругой деформации, происходит выпрямление скрученных участков молекул, но сами молекулы в целом не перемещаются в новые положения. Достигаемые в этих условиях деформации могут быть очень велики, при этом они обратимы: после снятия нагрузки молекулы возвращаются в прежнее состояние, сегменты скручиваются, и размеры тела восстанавливаются. Этот процесс протекает уже не мгновенно, т.к. время релаксации указанных перемещений достаточно велико. Такое состояние полимера называется высокоэластическим. Материалы, у которых температура стеклования ниже комнатной, при нормальной температуре являются каучукоподобными, мягкими, податливыми.

При дальнейшем нагреве достигается температура текучести, выше которой подвижны уже целые макромолекулы, и под нагрузкой они перемещаются относительно друг друга. Такая деформация необратима: полимер течёт, как вязкая жидкость, причём с ростом температуры вязкость уменьшается. Это состояние называется вязкотекучим.

У кристаллических полимеров наблюдается дополнительный переход, характеризуемый температурой плавления.

Во время эксплуатации и хранения полимеров в них могут происходить самопроизвольные, необратимые превращения в структуре, которые вызывают изменение свойств. Это явление называется старением и происходит под действием света, тепла, кислорода, озона, деформации и других факторов.

Наши рекомендации