Условия, необходимые для горения

Горением называется химическая реакция окисления, со­провождающаяся выделением тепла и излучением света. Горе- пне возникает и протекает при определенных условиях. Для пего необходимы горючее вещество, кислород и источник вос­пламенения.

Чтобы возникло горение, горючее вещество должно быть на­грето до определенной температуры источником воспламенения (пламенем, искрой, накаленным телом) или тепловым прояв­лением какого-либо другого вида энергии: химической (экзо­термическая . реакция), механической (удар, сжатие, трение) и т. д.

Выделившиеся при нагревании горючего вещества пары и газы смешиваются с воздухом и окисляются, образуя горючую смесь. По мере накопления тепла в результате окисления газов и паров скорость химической реакции увеличивается, вследствие чего происходит самовоспламенение горючей смеси и появля­ется пламя.

С появлением пламени наступает горение, которое при бла-« гоприятных условиях продолжается до полного сгорания ве­щества.

В установившемся процессе горения постоянным источником воспламенения является зона горения, т. е. область, где про­текает химическая реакция, выделяется тепло и излучается свет.

Для возникновения и протекания горения горючее вещество н кислород должны находиться в определенном количественном соотношении. Содержание кислорода в воздухе для большинства горючих веществ должно быть не менее 14—18%'.

Известно много различных видов очагов горения (горение свечи, мощной промышленной топки, пожар здания или соору­жения и прочее). Все они значительно отличаются друг от друга и различны по характеру горючего вещества, однако основ­ные явления, протекающие при горении и в процессе его, оди­наковы.

Рассмотрим процесс горения простого светильника (свечи восковой, стеариновой и др.). Зажженная свеча горит устойчиво в нормальной среде воздуха до тех пор, пока хватает для этого содержащегося в ней горючего (воска, стеарина, парафина). Свеча потухнет вследствие нарушения одного из основных условий

Механизм процесса горения

Сгорание является сложным физико-химическим процессом. На большую часть показателей двигателя влияют, однако, не физико-химические особенности процесса сгорания, а закономерности тепловыделения и вызываемого им изменения давления и температуры в цилиндре. Ими определяются энергетические и экономические показатели цикла, статические и динамические нагрузки на детали, оцениваемые максимальным давлением цикла рz и скоростью нарастания давления при сгорании (dp/d(j)max (МПа/°п. к. в.) или (dp/dt)max (МПа/с), тепловая напряженность деталей, оцениваемая по распределению температур и тепловых потоков, интенсивность шумоизлучения, в определенной степени механические потери в двигателе и токсичность отработавших газов. Благоприятные показатели работы двигателя обеспечиваются при тепловыделении, начинающемся за 5—15° до в. м. т., вызывающем равномерное повышение давления в интервале углов поворота коленчатого вала 15—30° и в основном завершающемся за 45—50°. Теплоиспользование в действительном цикле с таким характером тепловыделения мало отличается от имеющего место в цикле с подводом теплоты при V = const, так как поршень у в. м. т. движется с малыми скоростями и поэтому за время тепловыделения проходит малый путь. Так, если тепловыделение завершается через 35° после в. м. т., то степень последующего расширения газов отличается от степени сжатия лишь на 11—12%. В действительности постепенное тепловыделение выгоднее мгновенного в связи с уменьшением потерь теплоты в охлаждающую среду и механических потерь двигателя. Физико-химические особенности процесса сгорания оказывают существенное влияние на излучение пламени, отложения на деталях и токсичность отработавших газов.

Основы теории горения. По представлениям кинетики химических реакций, акт реагирования происходит при столкновении молекул, энергия которых превосходит определенное для каждой из реакций значение, достаточное для разрушения существующих внутримолекулярных связей и замещения их новыми. Это критическое значение энергии называют энергией активации, а сами молекулы, вступающие в реакцию,— термически активными. Число столкновений в единицу времени термически активных молекул существенно увеличивается с температурой. Оно также зависит от природы реагентов, их соотношения в смеси и давления. При увеличении давления частота столкновений возрастает вследствие увеличения числа молекул каждого из реагентов в единице объема, причем в тем большей степени, чем большее число молекул nм участвует в элементарном акте реакции. Скорость химических реакций, измеряемая количеством вещества, прореагировавшего в единице объема в единицу времени [кг/(с м3) или кмоль/(с м3)],

Условия, необходимые для горения - student2.ru . (2.17)

Здесь С — концентрация реагента; t — время; Ко — константа столкновений, зависящая от природы и соотношения реагентов в смеси; р — давление; nм — порядок химической реакции; Qa — энергия активации, зависящая от природы реагентов, механизма реакции и параметров состояния; Т — температура смеси, mR — универсальная газовая постоянная.

Приведенная зависимость справедлива для случая, когда концентрация реагентов поддерживается неизменной. В действительности она изменяется. Поэтому в ходе реакции скорость ее достигает максимума, а затем снижается до нуля.

Изложенных ранее представлений о химических реакциях, происходящих в результате соударения термически активных молекул исходных веществ, оказалось недостаточно для объяснения ряда наблюдений, так как: 1) экспериментально полученные зависимости скорости реакции от давления имеют нередко дробный положительный показатель степени, хотя очевидно, что в реакции не может участвовать дробное число молекул; 2) добавка некоторых веществ, так называемых присадок, к топливам существенно влияет на процесс горения, несмотря на очень малые концентрации; 3) зависимость скоростей предпламенных реакций от параметров состояния заметно отклоняется от определяемой по (2.17) вплоть до того, что в некотором диапазоне увеличение температуры сопровождается уменьшением скорости реакции (отрицательная температурная зависимость); 4) ряд реакций происходит с большими скоростями без повышения температуры смеси.

Эти и многие другие явления удалось объяснить на основании теории цепных реакций, в разработке которой выдающаяся роль принадлежит школе советских ученых во главе с акад. Н. Н. Семеновым. В соответствии с представлениями этой теории подавляющее большинство химических реакций идет по цепному механизму, т. е. исходные вещества переходят в конечные через более или менее длинную цепь отдельных реакций с образованием ряда промежуточных, нередко крайне неустойчивых, соединений. Ведущую роль в развитии цепной реакции играют химически активные частицы, обладающие свободными валентностями, легко вступающие в соединение с исходными или промежуточными продуктами без термической активации. В результате указанных реакций получаются конечные продукты и одновременно вновь образуется некоторое количество таких же или других активных частиц, которые снова вступают в реакции, возобновляя, цепь превращений.

Если в результате элементарного акта химически активной частицы с какой-либо молекулой воссоздается лишь одна активная частила, то имеет место простое продолжение реакции и она является неразветвленной. Скорость неразветвленной цепной реакции определяется числом активных частиц, возникающих в единицу времени, и средней длиной цепи. Химически активные частицы образуются в результате столкновений или самопроизвольного распада термически активных молекул. Поэтому зависимость w = f(p, Т) для неразветвленной цепной реакции аналогична (2.17). При этом рассматривают некоторую эффективную энергию активации, характеризующую итоговую зависимость скорости процесса от температуры. Если в результате элементарной реакции с участием одной активной частицы возникают две или большее число новых активных частиц, то имеет место гак называемое разветвление цепи. Скорость такой реакции очень быстро возрастает со временем даже при отсутствии повышения температуры. Обрыв цепи происходит при столкновении между собой химически активных частиц и в результате адсорбции их стенками, окружающими реагирующую смесь. Поэтому увеличение концентрации химически активных частиц сопровождается увеличением числа обрывов цепей и, как следствие, скорость разветвленной цепной реакции стабилизируется, а затем уменьшается в результате выгорания исходных веществ.

В соответствии с теорией цепных реакций дробный порядок реакции — результат сложного механизма течения реакции, включающей в себя ряд элементарных стадий, каждая из которых имеет свой порядок. В зависимости от значимости каждой из промежуточных стадий получаются те или иные значения показателя степени при р в (2.17). То обстоятельство, что каждая химически активная частица является источником целой серии превращений, позволяет объяснить ускоряющее или тормозящее действие небольших количеств присадок к топливу. Отрицательная температурная зависимость w объясняется тем, что увеличение температуры приводит к росту концентрации промежуточного продукта реакции, тормозящего образование конечных продуктов.

На протекание химических реакций в поршневых двигателях влияет как термическая, так и химическая активация частиц. Для различных условий преобладающим может быть один из способов активации. В большинстве случаев, однако, решающее влияние оказывает тепловое самоускорение реакций. Исключение составляет процесс самовоспламененияю.

В поршневых двигателях имеют место три характерных вида сгорания и их комбинаций: объемное воспламенение, воспламенение от искрового разряда с последующим распространением пламени и диффузионное горение.

Наши рекомендации