Водород. Изотопы водорода. Свойства водорода. Получение и применение

Водород. Изотопы водорода. Свойства водорода. Получение и применение

Водорода. Гидриды.

Водород — первый элемент периодической системы элементов. Широко распространён в природе. Катион (и ядро) самого распространённого изотопа водорода 1H — протон. Свойства ядра 1H позволяют широко использовать ЯМР-спектроскопию в анализе органических веществ.

Три изотопа водорода имеют собственные названия: 1H — протий (Н), 2H — дейтерий (D) и 3H — тритий (радиоактивен) (T).

Простое вещество водород — H2 — лёгкий бесцветный газ. В смеси с воздухом или кислородом горюч и взрывоопасен. Нетоксичен. Растворим в этаноле и ряде металлов: Fe, Ni, Pd, Pt.

Получение

В промышленности

1.Электролиз водных растворов солей:

2NaCl + 2H2O = H2^ + 2NaOH + Cl2

2.Пропускание паров воды над раскаленным коксом при температуре около 1000°C:

H2O + C = H2^ + CO

3.Из природного газа.

Конверсия с водяным паром:

CH4 + H2O = CO^ + 3H2 (1000 °C)

Каталитическое окисление кислородом:

2CH4 + O2 = 2CO^ + 4H2

4. Крекинг и риформинг углеводородов в процессе переработки нефти

В лаборатории

1.Действие разбавленных кислот на металлы. Для проведения такой реакции чаще всего используют цинк и разбавленную соляную кислоту:

Zn + 2HCl > ZnCl2 + H2

2.Взаимодействие кальция с водой:

Ca + 2H2O > Ca(OH)2 + H2

3.Гидролиз гидридов:

NaH + H2O > NaOH + H2

4.Действие щелочей на цинк или алюминий:

2Al + 2NaOH + 6H2O > 2Na[Al(OH)4] + 3H2^

Zn + 2KOH + 2H2O > K2[Zn(OH)4] + H2^

5.С помощью электролиза. При электролизе водных растворов щелочей или кислот на катоде происходит выделение водорода, например:

2H3O+ + 2e- > H2^ + 2H2O

Молекулы водорода Н2 довольно прочны, и для того, чтобы водород мог вступить в реакцию, должна быть затрачена большая энергия:

Н2 = 2Н + 432 кДж

Поэтому при обычных температурах водород реагирует только с очень активными металлами, например с кальцием, образуя гидрид кальция:

Ca + Н2 = СаН2

и с единственным неметаллом — фтором, образуя фтороводород:

F2 + H2 = 2HF

С большинством же металлов и неметаллов водород реагирует при повышенной температуре или при другом воздействии, например при освещении:

О2 + 2Н2 = 2Н2О

Он может «отнимать» кислород от некоторых оксидов, например:

CuO + Н2 = Cu + Н2O

Записанное уравнение отражает восстановительные свойства водорода.

N2 + 3H2 > 2NH3

С галогенами образует галогеноводороды:

F2 + H2 > 2HF, реакция протекает со взрывом в темноте и при любой температуре,

Cl2 + H2 > 2HCl, реакция протекает со взрывом, только на свету.

С сажей взаимодействует при сильном нагревании:

C + 2H2 > CH4

При взаимодействии с активными металлами водород образует гидриды:

2Na + H2 > 2NaH

Ca + H2 > CaH2

Mg + H2 > MgH2

Гидриды — солеобразные, твёрдые вещества, легко гидролизуются:

CaH2 + 2H2O > Ca(OH)2 + 2H2^

Оксиды восстанавливаются до металлов:

CuO + H2 > Cu + H2O

Fe2O3 + 3H2 > 2Fe + 3H2O

WO3 + 3H2 > W + 3H2O

Использование:

При производстве аммиака, метанола, мыла и пластмасс

При производстве маргарина из жидких растительных масел

Зарегистрирован в качестве пищевой добавки E949 (упаковочный газ)

Водород очень лёгок и в воздухе всегда поднимается вверх. Когда-то дирижабли и воздушные шары наполняли водородом. Но в 30-х гг. XX в. произошло несколько катастроф, когда дирижабли взрывались и сгорали. В наше время дирижабли наполняют гелием, несмотря на его существенно более высокую стоимость.

Водород используют в качестве ракетного топлива.

Гидриды— соединения водорода и элементов с меньшей электроотрицательностью чем у водорода. Так, например, соединения водорода с галогенами, азотом, кислородом, углеродом и серой не являются гидридами.

В зависимости от характера связи водорода различают три типа гидридов:

1.ионные гидриды (солеобразные гидриды);

2.металлические гидриды;

3.ковалентные гидриды.

Гидрид натрия NaH

Гидрид кальция CaH2

Фосфин РН3

Арсин AsН3

Силан SiH4

Герман GeH4

Галогены. Строение атомов, молекул и простых веществ. Проявляемые

Степени окисления. Физические и химические свойства галогенов и зако-

Номерности в их изменении. Энергетические диаграммы молекул галоге-

Нов.

Галогены - рождающие соли.

На валентных орбиталях - 7 электронов ns2np5. Являются сильными окислителями, присоединяя ион - образуют отрицательно заряженные галогениды.

Хлор, бром, йод, астат имеют степени окисления +1 +3 +5 +7, фтор - с самой высокой электроотричательностью, не имеет положительной СО. F->Аt радиусы атома возрастают, уменьшается: энергия ионизации, сродство к электрону, электроотрицательность - неметалл свойства - ослабевают.

Образуют двухатомные молекула Г2. в ряду F2-Cl2-Br2-I2 прочность связи убывает из за снижения плотности перекрывания валентных орбиталей с ростом гланого кв. числа.

В этом же ряду увеличивается ван-дер-ваальсово взаимодействие (рост темп плавления) и снижается окислительная активность

Физические свойства.

Фтор - бледно-зеленый газ, температура плавления -219оС, кипения -188оС, в воде растворен быть не может, так как интенсивно с ней взаимодействует.

Хлор - желто-зеленый газ, температура плавления -101оС, кипения -34оС, легко сжижается при 20оС и давлении 6 атм (0,6 Мпа), растворимость в воде при 20оС - 2,5 л в 1 л воды. Раствор хлора в воде практически бесцветен и называется хлорной водой.

Бром - красно-бурая жидкость, температура плавления -70оС, кипения +59оС, растворимость в воде при 20оС равна 0,02 г в 100 г воды. Раствор брома в воде - бромная вода - бурого цвета.

Иод - черно-фиолетовые с металлическим блеском кристаллы, плавятся при +113,6оС, температура кипения жидкого иода +185,5оС. Кристаллический иод легко возгоняется (сублимируется) - переходит из твердого в газообразное состояние. Растворимость в воде при 20оС равна 0,02 г в 100 г воды. Образующийся раствор светло-желтого цвета называется иодной водой. Значительно лучше, чем в воде, иод и бром растворяются в органических растворителях: четыреххлористом углероде, хлороформе, бензоле.

Т. кипения/плавления с ряду F2-Cl2-Br2-I2 - -219/-188, -101/-34, -7/60, 113/185

Хим. свойства

- образуют кислородные соединения - оксиды и оксокислоты

- растворимы в спиртах бензоле простых эфирах

- в водном растворе все кроме фтора диспропорционируют, равновесие смещается влево

- фтор окисляет воду

- образую галлогениды с металлами

- убывание окислительной активности: Н2 + Г2 =2НГ (фтор в темноте, хлор на свету, бром ещё и при нагреве, а йод - ещё и обратима)

- вытесняют из солец более слабые Г - хлор вытесняет бромиды и йодиды (Cl2 + 2KBr=Br2+2KCl)

Различная окисл. способность влияет на живые организмы - хлор и бром – отравляющие, а йод - антисептик

Применение:

Хлор - поливинилхлорид, хлорбензол и т.д. для отбеливания тканей, очищения воды, дезинфекции, а произвоные (KClO3) являются компонентами ракетного топлива.

Бром - как краситель и лекарственный препарат.

Йод - получение металлов высокой степени чистоты, как катализатор в органическом синтезе, как антисептик и лекарство

Получение:

В природе эти элементы встречаются в основном в виде галогенидов (за исключением иода, который также встречается в виде иодата натрия или калия в месторождениях нитратов щелочных металлов). Поскольку многие хлориды, бромиды и иодиды растворимы в воде, то эти анионы присутствуют в океане и природных рассолах. Основным источником фтора является фторид кальция, который очень малорастворим и находится в осадочных породах (как флюорит CaF2).

В промышленности хлор в основном получают электролизом водного раствора хлорида натрия в специальных электролизёрах. Основным способом получения простых веществ является окисление галогенидов Бром получают химическим окислением бромид-иона, находящегося в морской воде. Подобный процесс используется и для получения иода из природных рассолов, богатых I¯. В качестве окислителя в обоих случаях используют хлор, обладающий более сильными окислительными свойствами, а образующиеся Br2 и I2 удаляются из раствора потоком воздуха

В природе встречаются следующие стабильные изотопы галогенов: фтора - 19F, хлора - 35Cl и 37Cl, брома - 79Br и 81Br, иода - 127I.

Галогены в природе находятся только в виде соединений, причем в состав этих соединений галогены входят (за редчайшим исключением) только в степени окисления -1. Практическое значение имеют минералы фтора: CaF2 - плавиковый шпат, Na2AlF6 - криолит, Ca5F(PO4)3 - фторапатит и минералы хлора: NaCl - каменная соль (это же вещество - главный компонент, обуславливающий соленость морской воды), KСl - сильвин, MgCl2*KCl*6H2O - карналлит, KCl*NaCl - сильвинит. Бром в виде солей содержится в морской воде, в воде некоторых озер и в подземных рассолах. Соединения иода содержатся в морской воде, накапливаются в некоторых водрослях. Существуют незначительные залежи солей иода - KIO3 и KIO4 - В Чили и Боливии.

Действие галогенов с водой. Образование клатратов.

Растворимость. Галогены обладают некоторой растворимостью в воде, однако, как и следовало ожидать, из-за ковалентного характера связи XX и малого заряда растворимость их невелика. Фтор настолько активен, что оттягивает электронную пару от кислорода воды, при этом выделяется свободный O2 и образуются OF2 и HF. Хлор менее активен, но в реакции с водой получается некоторое количество HOCl и HCl. Гидраты хлора (например, Cl2*8H2O) могут быть выделены из раствора при охлаждении.

Иод проявляет необычные свойства при растворении в различных растворителях. При растворении небольших количеств иода в воде, спиртах, кетонах и других кислородсодержащих растворителях образуется раствор коричневого цвета (1%-ный раствор I2 в спирте обычный медицинский антисептик). Раствор иода в CCl4 или других бескислородных растворителях имеет фиолетовую окраску. Можно полагать, что в таком растворителе молекулы иода ведут себя подобно их состоянию в газовой фазе, которая имеет такую же окраску. В кислородсодержащих растворителях происходит оттягивание электронной пары кислорода на валентные орбитали иода.

Молекулы галогенов неполярны, галогены хорошо растворяются в спиртах, бензоле, простых эфирах.

Фтор в воде растворен быть не может, так как интенсивно с ней взаимодействует.

Хлор - растворимость в воде при 20оС - 2,5 л в 1 л воды. Раствор хлора в воде практически бесцветен и называется хлорной водой.

Бром - растворимость в воде при 20оС равна 0,02 г в 100 г воды. Раствор брома в воде - бромная вода - бурого цвета.

Иод- Растворимость в воде при 20оС равна 0,02 г в 100 г воды. Образующийся раствор светло-желтого цвета называется иодной водой. Значительно лучше, чем в воде, иод и бром растворяются в органических растворителях: четыреххлористом углероде, хлороформе, бензоле.

Взаимодействие галогенов с водой - сложный процесс, включающий растворение, образование сольватов и диспропорционирование.

Фтор в отличие от других галогенов воду окисляет:

2H2O + 2F2 = 4HF + O2.

Однако при насыщении льда фтором при -400С образуется соединение HFO

Можно отметить два типа взаимодействия молекул воды с молекулами галогенов. К первому относится процесс образования клатратов, например, 8Cl2. 46H2O при замораживании растворов. Молекулы галогена в клатратах занимают свободные полости в каркасе из молекул H2O, связанных между собой водородными связями.

Ко второму типу можно отнести гетеролитическое расщепление и окислительно-восстановительное диспропорционирование

состав продуктов взаимодействия в системе Cl2+H2O: растворенный в воде хлор (он преобладает), HCl, HClO, HClO3. При насыщении хлором холодной воды (0-20оС) часть молекул Cl2 диспропорционирует:

Cl2 + H2O = HCl + HClO,

при этом кислотность раствора постепенно увеличивается.

Бром и иод взаимодействуют с водой аналогично хлору

Промышленность

Применяют в гидрометаллургии и гальванопластике (травление, декапирование), для очистки поверхности металлов при паянии и лужении, для получения хлоридов цинка, марганца, железа и др. металлов. В смеси с ПАВ используется для очистки керамических и металлических изделий (тут необходима ингибированная кислота) от загрязнений и дезинфекции.

В пищевой промышленности зарегистрирована в качестве регулятора кислотности, пищевой добавки E507. Применяется для изготовления зельтерской (содовой) воды.

Медицина

Составная часть желудочного сока; разведенную соляную кислоту ранее назначали внутрь главным образом при заболеваниях, связанных с недостаточной кислотностью желудочного сока.

Хим. св-ва

Сера

S + 3F2 = SF6

S + Cl2 = SCl2

S + 6HNO3(конц.) = H2SO4 + 6NO2 ^ + 2H2O

S + 2H2SO4(конц.) = 3SO2 ^ + 2H2O

S + O2 = SO2

2Na + S = Na2S

3S + 6KOH = K2SO3 + 2K2S + 3H2O

Кислород

4K + O2 > 2K2O

2Sr + O2 > 2SrO

2NO + O2 > 2NO2

CH3CH2OH + 3O2 > 2CO2 + 3H2O

2Na + O2 > Na2O2

2BaO + O2 > 2BaO2

H2 + O2 > H2O2

Na2O2 + O2 > 2NaO2

Селен

Селен — аналог серы. Так же, как и серу, его можно сжечь на воздухе. Горит синим пламенем, превращаясь в двуокись SeO2. Только SeO2 — не газ, а кристаллическое вещество, хорошо растворимое в воде. Получить селенистую кислоту (SeO2 + H2O > H2SeO3) ничуть не сложнее, чем сернистую. А действуя на неё сильным окислителем (например, HClO3), получают селеновую кислоту H2SeO4, почти такую же сильную, как серная.

Химически теллур менее активен, чем сера. Он растворяется в щелочах, поддается действию азотной и серной кислот, но в разбавленной соляной кислоте растворяется слабо. С водой металлический теллур начинает реагировать при 100°С, а в виде порошка он окисляется на воздухе даже при комнатной температуре, образуя оксид Te02.

При нагреве на воздухе теллур сгорает, образуя TeО2. Это прочное соединение обладает меньшей летучестью, чем сам теллур. Поэтому для очистки теллура от оксидов их восстанавливают проточным водородом при 500-600 °С.

В расплавленном состоянии теллур довольно инертен, поэтому в качестве контейнерных материалов при его плавке применяют графит и кварц.

Полоний

Металлический полоний быстро окисляется на воздухе. Известны диоксид полония (РоО2)x и монооксид полония РоО. С галогенами образует тетрагалогениды. При действии кислот переходит в раствор с образованием катионов Ро2+ розового цвета:

Ро + 2HCl > PoCl2 + Н2^.

При растворении полония в соляной кислоте в присутствии магния образуется полоноводород:

Ро + Mg + 2HCl > MgCl2 + H2Po,

который при комнатной температуре находится в жидком состоянии (от ?36,1 до 35,3 °C)

В индикаторных количествах получены кислотный триоксид полония РоО3 и соли полониевой кислоты, не существующей в свободном состоянии — полонаты К2РоО4. Известен также диоксид полония PoO2. Образует галогениды состава PoX2, PoX4 и PoX6. Подобно теллуру полоний способен с рядом металлов образовывать химические соединения — полониды.

Полоний является единственным химическим элементом, который при низкой температуре образует одноатомную простую кубическую кристаллическую решётку

Физ.св-ва кислорода

При нормальных условиях кислород это газ без цвета, вкуса и запаха. 1л его весит 1,429 г. Немного тяжелее воздуха. Слабо растворяется в воде (4,9 мл/100г при 0 °C, 2,09 мл/100г при 50 °C) и спирте (2,78 мл/100г

Хорошо растворяется в расплавленном серебре (22 объёма O2 в 1 объёме Ag при 961 °C). Является парамагнетиком.

При нагревании газообразного кислорода происходит его обратимая диссоциация на атомы: при 2000 °C — 0,03 %, при 2600 °C — 1 %, 4000 °C — 59 %, 6000 °C — 99,5 %.

Жидкий кислород (темп. кипения ?182,98 °C) это бледно-голубая жидкость.

Твердый кислород (темп. плавления ?218,79 °C) — синие кристаллы

Хим. св-ва

Сильный окислитель, взаимодействует, практически, со всеми элементами, образуя оксиды. Степень окисления ?2. Как правило, реакция окисления протекает с выделением тепла и ускоряется при повышении температуры. Пример реакций, протекающих при комнатной температуре:

4K + O2 = 2K2O

Окисляет соединения, которые содержат элементы с не максимальной степенью окисления:

2NO + O2 = 2NO2

Окисляет большинство органических соединений:

CH3CH2OH + 3O2 = 2CO2 + 3H2O

При определенных условиях можно провести мягкое окисление органического соединения:

CH3CH2OH + O2 = CH3COOH + H2O

Кислород не окисляет Au и Pt, галогены и инертные газы.

Кислород образует пероксиды со степенью окисления ?1.

Например, пероксиды получаются при сгорании щелочных металлов в кислороде:

2Na + O2 = Na2O2

Некоторые окисды поглощают кислород:

2BaO + O2 = 2BaO2

По теории горения, разработанной А. Н. Бахом и К. О. Энглером, окисление происходит в две стадии с образованием промежуточного пероксидного соединения. Это промежуточное соединение можно выделить, например, при охлаждении пламени горящего водорода льдом, наряду с водой, образуется перекись водорода:

H2 + O2 > H2O2

Надпероксиды имеют степень окисления 1/2, то есть один электрон на два атома кислорода (ион O2 -). Получают взаимодействием пероксидов с кислородом при повышенных давлениям и температуре:

Na2O2 + O2 = 2NaO2

Озониды содержат ион O3 - со степенью окисления ?1/3. Получают действием озона на гидроксиды щелочных металлов:

КОН(тв.) + О3 = КО3 + КОН + O2

Ион диоксигенил O2+ имеет степень окисления +1/2. Получают по реакции:

PtF6 + O2 = O2PtF6

Фториды кислорода

Дифторид кислорода, OF2 степень окисления +2, получают пропусканием фтора через раствор щелочи:

2F2 + 2NaOH > OF2 + 2NaF + H2O

Монофторид кислорода (Диоксидифторид), O2F2, нестабилен, степень окисления +1. Получают из смеси фтора с кислородом в тлеющем разряде при температуре ?196 °C.

Пропуская тлеющий разряд через смесь фтора с кислородом при определенных давлении и температуре получаются смеси высших фторидов кислорода O3F2, О4F2, О5F2 и О6F2.

Кислород поддерживает процессы дыхания, горения, гниения.

В свободном виде элемент существует в двух аллотропных модификациях:O2 и O3 (озон).

Озон образуется во многих процессах, сопровождающихся выделением атомарного кислорода, например при разложении перекисей, окислении фосфора и т. п.

В промышленности его получают из воздуха или кислорода в озонаторах действием электрического разряда. Сжижается O3 легче, чем O2, и потому их несложно разделить. Озон для озонотерапии в медицине получают только из чистого кислорода. При облучении воздуха жёстким ультрафиолетовым излучением образуется озон. Тот же процесс протекает в верхних слоях атмосферы, где под действием солнечного излучения образуется и поддерживается озоновый слой.

Физические свойства озона

• Молекулярная масса — 47,998 а.е.м.

• Плотность газа при нормальных условиях — 1,1445 кг/м3. Относительная плотность газа по кислороду 1,5; по воздуху — 1,62 (1,658 [3]).

• Плотность жидкости при —183 °C — 1,71 кг/м3

• Температура кипения —111,9 °C. Жидкий озон — тёмно-синего цвета.

• Температура плавления —251,4 °C. В твёрдом состоянии — чёрно-синего цвета.

• Растворимость в воде при 0oС — 0,394 кг/м3 (0,494 л/кг), она в 10 раз выше по сравнению с кислородом.

• В газообразном состоянии озон диамагнитен, в жидком — слабопарамагнитен.

• Запах — резкий, специфический «металлический» (по Менделееву — «запах раков»).

Химич. Св-ва озона.

Озон — мощный окислитель, намного более реакционноспособный, чем двухатомный кислород. Окисляет почти все металлы (за исключением золота, платины и иридия) до их высших степеней окисления. Окисляет многие неметаллы.

2 Cu2+(aq) + 2 H3O+(aq) + O3(g) = 2 Cu3+(aq) + 3 H2O(l) + O2(g)

Озон повышает степень окисления оксидов:

NO + O3 > NO2 + O2

Образование озона проходит по обратимой реакции:

3O2 + 68 ккал (285 кДж) <-> 2O3.

Оксиды.

Оксид (окисел, окись) — соединение химического элемента с кислородом, в котором сам кислород связан только с менее электроотрицательным элементом. Химический элемент кислород по электроотрицательности второй после фтора, поэтому к оксидам относятся почти все соединения химических элементов с кислородом. К исключениям относятся, например, дифторид кислорода OF2.

Оксиды — весьма распространённый тип соединений, содержащихся в земной коре и во вселенной вообще. Примерами таких соединений являются ржавчина, вода, песок, углекислый газ, ряд красителей. Оксидами называется класс минералов, представляющих собой соединения металла с кислородом (см. Категория:Окислы).

Соединения, содержащие атомы кислорода, соединённые между собой, называются пероксидами (перекисями) и супероксидами. Они не относятся к категории оксидов.

В зависимости от химических свойств различают:

солеобразующие оксиды:

основные оксиды (например, оксид натрия Na2O, оксид меди(II) CuO): оксиды металлов, степень окисления которых I—II;

кислотные оксиды (например, оксид серы(VI) SO3, оксид азота(IV) NO2): оксиды металлов со степенью окисления V—VII и оксиды неметаллов;

амфотерные оксиды (например, оксид цинка ZnO, оксид алюминия Al2О3): оксиды металлов со степенью окисления III—IV и исключения (ZnO, BeO, SnO, PbO);

Несолеобразующие оксиды: оксид углерода(II) СО, оксид азота(I) N2O, оксид азота(II) NO, оксид кремния(II) SiO.

Хим. св-ва осн окс

1. Основный оксид + кислота = соль + вода

CuO + H2SO4 = CuSO4 + H2O

Примечание:кислота ортофосфорная или сильная.

2. Сильноосновный оксид + вода = щелочь

CaO + H2O = Ca(OH)2

3. Сильноосновный оксид + кислотный оксид = соль

CaO + Mn2O7 = Ca(MnO4)2

Na2O + CO2 = Na2CO3

4. Основный оксид + водород = металл + вода

CuO + H2 = Cu + H2O

Примечание: металл менее активный, чем алюминий

Хим. св-ва кисл окс

1. Кислотный оксид + вода = кислота

SO3 + H2O = H2SO4

Некоторые оксиды, например SiO2, с водой не реагируют, поэтому их кислоты получают косвенным путём.

2. Кислотный оксид + основный оксид = соль

CO2 + CaO = CaCO3

3. Кислотный оксид + основание = соль + вода

SO2 + 2NaOH = Na2SO3 + H2O

Если кислотный оксид является ангидридом многоосновной кислоты, возможно образование кислых или средних солей:

Ca(OH)2 + CO2 = CaCO3v + H2O

CaCO3 + CO2 + H2O = Ca(HCO3)2

4. Нелетучий оксид + соль1 = соль2 + летучий оксид

SiO2 + Na2CO3 = Na2SiO3 + CO2^

Пероксид водорода

В природе он образуется как побочный продукт при окислении многих веществ кислородом воздуха. Следы его постоянно содержатся в атмосферных осадках. Пероксид водорода частично образуется также в пламени горящего водорода, но при остывании продуктов сгорания разлагается.

В довольно больших концентрациях (до нескольких процентах) Н2О2 может быть получена взаимодействием водорода в момент выделения с молекулярным кислородом. Пероксид водорода частично образуется также при нагревании до 2000 °С влажного кислорода, при прохождении тихого электрического разряда сквозь влажную смесь водорода с кислородом и при действии на воду ультрафиолетовых лучей или озона.

В природе он образуется как побочный продукт при окислении многих веществ кислородом воздуха. Следы его постоянно содержатся в атмосферных осадках. Пероксид водорода частично образуется также в пламени горящего водорода, но при остывании продуктов сгорания разлагается.

В довольно больших концентрациях (до нескольких процентах) Н2О2 может быть получена взаимодействием водорода в момент выделения с молекулярным кислородом. Пероксид водорода частично образуется также при нагревании до 2000 °С влажного кислорода, при прохождении тихого электрического разряда сквозь влажную смесь водорода с кислородом и при действии на воду ультрафиолетовых лучей или озона.

Пероксид водорода проще всего получать из пероксида бария (ВаО2), действуя на неё разбавленной серной кислотой:

ВаО2 + Н2SO4 = BaSO4 + Н2О2.

При этом наряду с пероксидом водорода образуется нерастворимый в воде сульфат бария, от которого жидкость может быть отделена фильтрованием. Продаётся Н2О2 обычно в виде 3%-ного водного раствора

Основным методом получения пероксида водорода является взаимодействие с водой надсерной кислоты (или некоторых её солей), легко протекающее по схеме:

Н2S2O8 + 2 H2O = 2 H2SO4 + Н2О2.

Меньшее значение имеют некоторые новые методы (разложение органических пероксидных соединений и др.) и старый способ получения из ВаО2. Для хранения и перевозки больших количеств пероксида водорода наиболее пригодны ёмкости из алюминия (не ниже 99,6%-ной чистоты).

Основным методом получения пероксида водорода является взаимодействие с водой надсерной кислоты (или некоторых её солей), легко протекающее по схеме:

Н2S2O8 + 2 H2O = 2 H2SO4 + Н2О2.

Меньшее значение имеют некоторые новые методы (разложение органических пероксидных соединений и др.) и старый способ получения из ВаО2. Для хранения и перевозки больших количеств пероксида водорода наиболее пригодны ёмкости из алюминия (не ниже 99,6%-ной чистоты).

Чистый пероксид водорода - бесцветная сиропообразная жидкость (с плотностью около 1,5 г/мл), под достаточно уменьшенным давлением перегоняющуюся без разложения. Замерзание Н2О2 сопровождается сжатием (в отличие от воды). Белые кристаллы пероксида водорода плавятся при -0,5 °С, т. е. почти при той же температуре, что и лёд.

Теплота плавления пероксида водорода составляет 13 кДж/моль, теплота испарения - 50 кДж/моль (при 25 °С). Под обычным давлением чистый Н2О2 кипит при 152 °С с сильным разложением (причём пары могут быть взрывоопасны). Для его критических температуры и давления теоретически рассчитаны значения 458 °С и 214 атм. Плотность чистого Н2О2 равна 1,71 г/см3 в твёрдом состоянии, 1,47 г/см3 при 0 °С и 1,44 г/см3 при 25 °С. Жидкий пероксид водорода, подобно воде, сильно ассоциирована. Показатель преломления Н2О2 (1,41), а также её вязкость и поверхностное натяжение несколько выше, чем у воды (при той же температуре).

Пероксид водорода является сильным окислителем, т. е. легко отдаёт свой лишний (по сравнению с более устойчивым соединением - водой) атом кислорода. Так, при действии безводной и даже высококонцентрированной Н2О2 на бумагу, опилки и другие горючие вещества они воспламеняются. Практическое применение пероксида водорода основано главным образом на его окисляющем действии. Ежегодное мировое производство Н2О2 превышает 100 тыс. т.

Характерный для пероксида водорода окислительный распад может быть схематически изображён так:

Н2О2 = Н2О + О (на окисление).

Кислая среда более благоприятствует этому распаду, чем щелочная.

Значительно менее характерен для пероксида водорода восстановительный распад по схеме:

Н2О2 = О2 + 2 Н (на восстановление)

Щелочная среда более благоприятствует такому распаду, чем кислая.

Восстановительный распад пероксида водорода имеет место, например, в присутствии оксида серебра:

Ag2O + Н2О2 = 2 Ag + H2O + O2.

Аналогично, по существу, протекает его взаимодействие с озоном (О3 + Н2О2 = 2 Н2О + 2 О2) и с перманганатом калия в кислой среде:

2 КMnO4 + 5 Н2О2 + 3 H2SO4 = K2SO4 + 2 MnSO4 + 5 O2 + 8 H2O.

Более половины всего вырабатываемого пероксида водорода расходуется на отбелку различных материалов, проводимую обычно в очень разбавленных (0,1-1%) водных растворов Н2О2. Важное преимущество пероксида водорода перед другими окислителями заключается в "мягкости" действия, благодаря чему сам отбеливаемый материал почти не затрагивается. С этим же связано и медицинское использование очень разбавленных раствором пероксида водорода в качестве антисептика (для полоскания горла и т. д.).

Очень концентрированные (80% и выше) водные растворы Н2О2 находят применение в качестве источников энергии

Оксид серы IV

SO2 (сернистый ангидрид; сернистый газ)

Физические свойства

Бесцветный газ с резким запахом; хорошо растворим в воде (в 1V H2O растворяется 40V SO2 при н.у.); t°пл. = -75,5°C; t°кип. = -10°С.

Обесцвечивает многие красители, убивает микроорганизмы.

Получение

При сжигании серы в кислороде:

S + O2 ® SO2

Окислением сульфидов:

4FeS2 + 11O2 ® 2Fe2O3 + 8SO2­

Обработкой солей сернистой кислоты минеральными кислотами:

Na2SO3 + 2HCl ® 2NaCl + SO2­ + H2O

При окислении металлов концентрированной серной кислотой:

Cu + 2H2SO4(конц) ® CuSO4 + SO2­ + 2H2O

Химические свойства

Сернистый ангидрид - кислотный оксид. При растворении в воде образуется слабая и неустойчивая сернистая кислота H2SO3 (существует только в водном растворе)

SO2 + H2O « H2SO3 K1® H+ + HSO3- K2® 2H+ + SO32-

H2SO3 образует два ряда солей - средние (сульфиты) и кислые (бисульфиты, гидросульфиты).

Ba(OH)2 + SO2 ® BaSO3?(сульфит бария) + H2O

Ba(OH)2 + 2SO2 ® Ba(HSO3)2(гидросульфит бария)

Реакции окисления (S+4 – 2e ® S+6)

SO2 + Br2 + 2H2O ® H2SO4 + 2HBr

5SO2 + 2KMnO4 + 2H2O ® K2SO4 + 2MnSO4 + 2H2SO4

Водные растворы сульфитов щелочных металлов окисляются на воздухе:

2Na2SO3 + O2 ® 2Na2SO4; 2SO32- + O2 ® 2SO42-

Реакции восстановления (S+4 + 4e ® S0)

SO2 + С –t°® S + СO2

SO2 + 2H2S ® 3S + 2H2O

Оксид серы VI

SO3 (серный ангидрид)

Физические свойства

Бесцветная летучая жидкость, t°пл. = 17°C; t°кип. = 66°С; на воздухе "дымит", сильно поглощает влагу (хранят в запаянных сосудах).

SO3 + H2O ® H2SO4

Твердый SO3 существует в трех модификациях. SO3 хорошо растворяется в 100%-ной серной кислоте, этот раствор называется олеумом.

Получение

1)2SO2 + O2 кат;450°C® 2SO3

2) Fe2(SO4)3 –t°® Fe2O3 + 3SO3­

Химические свойства

Серный ангидрид - кислотный оксид. При растворении в воде дает сильную двухосновную серную кислоту:

SO3 + H2O ® H2SO4 « H+ + HSO4- « 2H+ + SO42-

H2SO4 образует два ряда солей - средние (сульфаты) и кислые (гидросульфаты):

2NaOH + SO3 ® Na2SO4 + H2O

NaOH + SO3 ® NaHSO4

SO3 - сильный окислитель.

Н2SO4 — сильная двухосновная кислота, отвечающая высшей степени окисления серы (+6). При обычных условиях концентрированная серная кислота — тяжёлая маслянистая жидкость без цвета и запаха.Серная кислота — довольно сильный окислитель, особенно при нагревании и в концентрированном виде; окисляет HI и частично HBr до свободных галогенов, углерод до CO2, S — до SO2, окисляет многие металлы (Cu, Hg и др.). При этом серная кислота восстанавливается до SO?, а наиболее сильными восстановителями — до S и H?S. Концентрированная H?SO? частично восстанавливается H?. Из-за чего не может применяться для его сушки. Разбавленная H?SO? взаимодействует со всеми металлами, находящимися в электрохимическом ряду напряжений левее водорода с его выделением. Окислительные свойства для разбавленной H?SO? нехарактерны. Серная кислота образует два ряда солей: средние — сульфаты и кислые — гидросульфаты, а также эфиры. Известны пероксомоносерная (или кислота Каро) H2SO5 и пероксодисерная H2S2O8 кислоты.

H2SO3 — неустойчивая двухосновная кислота средней силы, существует лишь в разбавленных водных растворах (в свободном состоянии не выделена):

SO2 + H2O ? H2SO3 ? H+ + HSO3- ? 2H+ + SO32-.

Кислота средней силы:

H2SO3 <=> H+ + HSO3-, KI = 2·10-2

HSO3- <=> H+ + SO32-, KII = 6·10-8

Растворы H2SO3 всегда имеют резкий специфический запах (похожий на запах зажигающейся спички), обусловленный наличием химически не связанного водой SO2.

Двухосновная кислота, образует два ряда солей: кислые — гидросульфиты (в недостатке щёлочи):

H2SO3 + NaOH = NaHSO3 + H2O

и средние — сульфиты (в избытке щёлочи):

H2SO3+2NaOH=Na2SO3+2H2O

Как и сернистый газ, сернистая кислота и её соли являются сильными восстановителями:

H2SO3+Br2+H2O=H2SO4+2HBr

При взаимодействии с ещё более сильными восстановителями может играть роль окислителя:

H2SO3+2H2S=3S+3H2O

Качественная реакция на сульфит-ионы — обесцвечивание раствора перманганата калия:

5SO3 + 6H+2MnO4=5SO4+2Mn+3H2O

Сульфиты — соли сернистой кислоты H2SO3.Существует два ряда сульфитов: средние (нормальные) общей формулы M2SO3 и кислые (гидросульфиты) общей формулы MHSO3 (М — одновалентный металл).

Средние, за исключением сульфитов щелочных металлов и аммония, малорастворимы в воде, растворяются в присутствии SO2. Из кислых в свободном состоянии выделены лишь гидросульфиты щелочных металлов. Для сульфитов в водном растворе характерны окисление до сульфатов и восстановление до тиосульфатов M2S2O3.

Реакции с повышением степени окисления серы от +4 до +6, например:

Na2SО3 + Сl2 + Н2О = Nа2SО4 + 2 НСl.

Реакции самоокисления-самовосстановления серы возможны и при ее взаимодействии с сульфитами. Так, при кипячении раствора с мелкоизмельченной серой образуется тиосульфат (иногда называют гипосульфит) натрия:

Na2SO3 + S > Na2S2O3.

Таким образом, сернистая кислота и ее соли могут проявлять как окислительные, так и восстановительные свойства

Получают взаимодействием SO2 с гидроокисями или карбонатами соответствующих металлов в водной среде.

Применяются главным образом гидросульфиты — в текстильной промышленности при крашении и печатании (KHSO3, NaHSO3), в бумажной промышленности при получении целлюлозы из древесины [Ca(HSO3)2], в фотографии, в органическом синтезе.

Сульфаты — сернокислые соли, соли серной кислоты H2SO4. Имеются два ряда С.— средние (нормальные) общей формулы Mg2SO4 и кислые (Гидросульфаты) — MHSO4, где М — одновалентный металл.

С. — кристаллические вещества, бесцветные (если катион бесцветен), в большинстве случаев хорошо растворимые в воде. Малорастворимые С. встречаются в виде минералов: гипса CaSO4?2H2O, целестина SrSO4, англезита PbSO4 и др. Практически нерастворимы барит BaSO4 и RaSO4. Кислые С. выделены в твёрдом состоянии лишь для наиболее активных металлов — Na, К и др. Они хорошо растворимы в воде, легко плавятся. Нормальные С. можно получить растворением металлов в H2SO4, действием H2SO4 на окиси, гидроокиси, карбонаты металлов и др. Гидросульфаты получают нагреванием нормальных С. с концентрированной H2SO4:

K2SO4 + H2SO4 = 2KHSO4.

Кристаллогидраты С. некоторых тяжёлых металлов называются купоросами .

Широкое применение во многих отраслях промышленности находят сульфаты природные.

Строение молекул.

В водородных соединениях - (-3)/ Обычно газообразные вещества с резким запахом.

Температуры кипения и плавления растут от фосфина к стиину. Аммиак - эксклюзивный, сука. Высокие температуры кипения и плавления, легко сжижается.

Эти свойства объясняются повышенной энергией взаимодействия между его молекулами вследствие образования водородных связей.

По мере увеличения размера атома элемента прочность сязи убывает, что приводит к понижению термической устойчивости.

Процесс разложения - с обр. простых вв

2NH3=N2+3H2

Температура разложения падает с уменьшением устойчивости водородных молекул.

Аммиак вз со многими слабыми кислотами, фосфин - только с самыми сильными. Арсин осноные свойства не проявляют при нормальных условиях, а у стибина не онаружены

Являются сильными восстановителями, восст. активность растёт от аммиака к стибину

Мония.

NH3, нитрид водорода, при нормальных условиях — бесцветный газ с резким характерным запахом (запах нашатырного спирта), почти вдвое легче воздуха, ядовит. Растворимость NH3 в воде чрезвычайно велика — около 1200 объёмов (при 0 °C) или 700 объёмов (при 20 °C) в объёме воды.

Молекула <

Наши рекомендации