Характеристики химической связи – энергия, длина, кратность, полярность.

Причина образования химической связи.

Химическая связь – совокупность взаимодействий атомов, приводящая к образованию устойчивых систем (молекул, комплексов, кристаллов.). Она возникает, если в результате перекрывания е облаков атомов происходит уменьшение полной энергии системы. Мерой прочности служит энергия связи, которая определяется работой, нужной для разрушения данной связи.

Виды хим. связи: ковалентная (полярная, неполярная, обменная и донорно-акцепторная), ионная, водородная и металлическая.

Длина связи – расстояние между центрами атомов в молекуле. Энергия и длина связей зависят от характера распределения Эл. плотности между атомами. На распределение е плотности влияет пространственная направленность хим. связи. Если 2-х атомные молекулы всегда линейны, то формы многоатомных молекул м.б. различны.

Угол между воображаемыми линиями, которые можно провести через центры связанных атомов называется валентным. Распределение е плотности так же зависит от размеров ат. и их эо. В гомоатомных Эл. плотность распределена равномерно. В гетероатомных смещена в том направлении, которое способствует уменьшению энергии системы.

Энергия связи – это энергия, которая выделяется при образовании молекулы из одиночных атомов. Энергия связи отличается от ΔHобр. Теплота образования – это энергия, которая выделяется или поглощается при образовании молекул из простых веществ. Так:

N2 + O2 → 2NO + 677,8 кДж/моль – ∆Hобр.

N + O → NO - 89,96 кДж/моль – Е св.

Кратность связи определяется количеством электронных пар, участвующих в связи между атомами. Химическая связь обусловлена перекрыванием электронных облаков. Если это перекрывание происходит вдоль линии, соединяющей ядра атомов, то такая связь называется σ-связью. Она может быть образована за счет s – s электронов, р – р электронов, s – р электронов. Химическая связь, осуществляемая одной электронной парой, называется одинарной.

Если связь образуется более чем одной парой электронов, то она называется кратной.

Кратная связь образуется в тех случаях, когда имеется слишком мало электронов и связывающихся атомов, чтобы каждая пригодная для образования связи валентная орбиталь центрального атома могла перекрыться с какой-либо орбиталью окружающего атома.

Поскольку р-орбитали строго ориентированы в пространстве, то они могут перекрываться только в том случае, если перпендикулярные межъядерной оси р-орбитали каждого атома будут параллельны друг другу. Это означает, что в молекулах с кратной связью отсутствует вращение вокруг связи.

Если двухатомная молекула состоит из атомов одного элемента, как, например, молекулы Н2, N2, Cl2 и т. п., то каждое электронное облако, образованное общей парой электронов и осуществляющее ковалентную связь, распределяется в пространстве симметрично относительно ядер обоих атомов. В подобном случае ковалентная связь называется неполярной или гомеополярной. Если же двухатомная молекула состоит из атомов различных элементов, то общее электронное облако смещено в сторону одного из атомов, так что возникает асимметрия в распределении заряда. В таких случаях ковалентная связь называется полярной или гетерополярной.

Для оценки способности атома данного элемента оттягивать к себе общую электронную пару пользуются величиной относительной электроотрицательности. Чем больше электроотрицательность атома, тем сильнее притягивает он общую электронную пару. Иначе говоря, при образовании ковалентной связи между двумя атомами разных элементов общее электронное облако смещается к более электроотрицательному атому, и в тем большей степени, чем больше различаются электроотрицательности взаимодействующих атомов. Значения электроотрицательности атомов некоторых элементов по отношению к электроотрицательности фтора, которая принята равной 4.

Электроотрицательность закономерно изменяется в зависимости от положения элемента в периодической системе. В начале каждого периода находятся элементы с наиболее низкой электроотрицательностью - типичные металлы, в конце периода (перед благородными газами) - элементы с наивысшей электроотрицательностью, т. е. типичные неметаллы.

У элементов одной и той же подгруппы электроотрицательность с ростом заряда ядра проявляет тенденцию к уменьшению. Таким образом, чем более типичным металлом является элемент, тем ниже его электроотрицательность; чем более типичным неметаллом является элемент, тем выше его электроотрицательность.

Причина образования химической связи. Атомы большинства химических элементов в индивидуальном виде не существует, так как взаимодействуют между собой, образуя сложные частицы (молекулы, ионы и радикалы). Между атомами действуют электоростатические силы, т.е. сила взаимодействия электрических зарядов, носителями которых являются электроны и ядра атомов. В образовании химической связи между атомами главную роль играют валентные электроны.

Причины образования химической связи между атомами можно искать в электростатической природе самого атома. Благодаря наличию в атомах пространственно разделенных областей, обладающих электрическим зарядом, между различными атомами могут возникать электростатические взаимодействия, способные удерживать эти атомы вместе.

При образовании химической связи происходит перераспределение в пространстве электронных плотностей, исходно относившихся к различным атомам. Поскольку наименее прочно связаны с ядром электроны внешнего уровня, то в образовании химической связи именно этим электронам принадлежит главная роль. Количество химических связей, образованных данным атомом в соединении, называют валентностью. По этой причине электроны внешнего уровня называют валентными электронами.

Наши рекомендации