Химия как наука о в-вах и их превращениях. Место химии в системе наук. Материя. Химическая форма энергии. Смеси и вещества. Свойства материалов. Анализ и синтез.

Билет 1

Химия как наука о в-вах и их превращениях. Место химии в системе наук. Материя. Химическая форма энергии. Смеси и вещества. Свойства материалов. Анализ и синтез.

1)Химия-наука,изучающая процессы превращения вещ-в, сопровождающиеся изменением состава и структуры, а также взаимные переходы м/у этими процессами и др. формами движения материи.она изучает явл-я, происход. на микроскопическом или атомно-молекулярном уровне. Материя – философская категория, обозначающая объективную реальность, существующую независимо от человеческого сознания. Материя существует в виде двух форм – поле и вещество.Вещество-материальное образование, сост. из элементарных частиц, имеющих собственную массу или массу покоя.Это любой вид материи, облад. собственной массой; любая совокупность атомов и молекул.Поле-материальная среда, в кот. осущ. взаимодействие частиц.В эл-маг поле-взаимодействие м/у заряж. частицами, ядерное поле-взаимод. м/у нуклонами. Полевая форма материи не явл. непосредствен. объектом химии и проявляет прежде всего энергетический характер.

Энергия-это мера способности совершать работу.Единицей измерения энергии и работы в системе СИ-Дж.Энергия может существовать в разнообразных формах: химическая, электрическая, механическая, ядерная и солнечная.Понятие «химическая энергия» относится к хим. системам.

Химической системой наз.вещество или совокупность вещ., ограниченной от окружающей среды реальными или воображаемыми границами и являющиеся предметом рассмотрения с точки зрения их хим.состава и свойств.Хим сист:1)чистые вещества 2)смеси. Чистые вещ-ва- имеют постоян.состав и определ. физ и хим св-ва.они всегда гомогенны, однородны по составу.Абсолютно чистых веществ в природе не существует. Смесь-это совокупность двух и более веществ, смеси могут иметь произвольный состав, который как правило не выражается химической формулой.Если смесь веществ однородна, т.е между различными ее компонентами нет границы раздела, ее наз. Гомогенной.Смеси могут состоять из вещ-в ,которые практически не растворимы или ограниченно растворимы друг в друге, в этом случае их наз. гетерогенными.

Анализ-;

Синтез-

Передача энергии, вызываемая разностью температур между системой и ее окружением или между одной системой и другой системой, называется передачей теплоты. q=m*dT.Если точно известно из какого вещ-ва состоит система, и это вещ-во можно охарактеризовать его удельной теплоемкостью c,то q=m*с*dT.Удельная теплоемкость-это энергия, необходимая для повышения температуры 1 кг данного вещ-ва на 1 кельвин.Молярная теплоемкость вещ-ва- это энергия, необходимая для повышения температуры 1 моля данного вещ-ва на 1 кельвин-Сm.

Температура-одна из функций состояния.она служит мерой средней кинетической энергии всех частиц в системе.Температура-св-во, определяющее направление перехода теплоты от одного тела к другому, где теплота-передача энергии вызываемая разностью температур.Если к системе подводится энергия, то это приводит к возрастанию кинетической энергии частиц системы, следовательно повышается температура системы.

Основные виды химической связи. Количественные характеристики химической связи. Длина связи между атомами, энергия связи, валентные углы. Электронная теория валентности Льюиса – Косселя. Ионный и ковалентые характер связи.

Химическая связь – это сила удерживающая вместе два или несколько атомов, ионов, молекул или любую комбинацию из них. Главное при образовании связи - минимум энергии.

Количесвтенные характеристики связи: длина связи, валентный угол, энергия связи.

Длина сязи –расст. между центрами атомов, образующих данную связь.

Энергия связи– это энергия, необходимая для того чтобы разделить два связанных между собой атома и удалить их друг от друга на расстояние на котором они уже не испытывают силы притяжения друг к другу. Для двухатомных молекул энергия связи равна энергии диссоциации молекулы. Для многоатомных молек (АВn) средняя энергия связи равна 1/n энергии распада молекулы на атомы (энергии атомизации).

Кратность хим. связи опр-ся числом общих электр. пар, которые связ-ют атомы. Простая (одинарная): H-H

Двойная связь: O=O

Тройная связь: Химия как наука о в-вах и их превращениях. Место химии в системе наук. Материя. Химическая форма энергии. Смеси и вещества. Свойства материалов. Анализ и синтез. - student2.ru

Валентный угол – это угол образованный линиями соединяющими центры атомов в направлении действия между ними химической связи. (Валентность – способность атома образовывать химические связи)

Правила Фаянса

Степень коваленттности велика в случае:1) больших зарядов на ионах С4+ - ков, Nа+ - ио; 2) малых размеров катиона С4+ - 0,015 нм – ков, + - 0,095 нм – ио; 3) больших размеров аниона I- - 0,216 нм ков; F- - 0,136нм ио.

Ионные соединения

тв в-ва с высокой температурой плавления >400*С, многие растворяются в полярных р-лях, большинство не растворяется в неполярных растворителях; расплавы соединений проводят эл ток, т к состоят из заряженных частиц; водные растворы проводят Эл ток; большинство ионных соединений устойчивы в виде кристаллических решеток.

Ковалентные соединения

Газообразные, жидкие или тв в-ва с низкой температурой плавления <300*С; многие не растворяются в полярных растворителях, большиноство растворимы в неполярных растворителях; р-ры и р-вы не проводят электричество.

Билет 4

1. Понятие о квантовой механике. Квантовый характер излучения и поглощения энергии. Уравнение Планка. Атомные спектры как характеристики энергетических уровней электронов. Корпускулярно-волновая природа электрона. Уравнение де Бройля.

Распределение электронов в многоэлектронных атомах основано на трех положениях: принципе минимума энергии, принципе Паули, правиле Хунда.

Принцип Паули: в атоме не может быть электронов ,имеющих одинаковый набор всех четырех квантовых чисел (на одной орбитали может быть не более двух электронов с различными спинами). Каждый подуровень содержит 2l + 1 орбитали, на которых размещаются не более 2(2l + 1) электронов. Отсюда следует, что емкость s-орбиталей – 2, p-орбиталей – 6, d-орбиталей – 10 и f-орбиталей – 14 электронов. Два электрона, находящихся на одной орбитали и обладающих противоположно направленными спинами , называют спаренными, электроны ,расположенные по одному на орбиталях- неспаренные. Принцип минимума энергии: Электрон в основном (невозб.) состоянии в атоме занимает такое положение, чтобы енергия была бы минимальной. Энергия электрона главным образом определяется суммой (n+l ). Правило Клечковского: 1) В первую очередь заполняется та орбиталь где (n+l ) min

2) Если (n+l ) для нескольких орбиталей одинаковы, то в первую очередь заполняется та орбиталь, где n- меньше.

1s<2s<2p<3s<3p<4s<3d <4p<5s<4d<5p<6s<4f<5d<6p<7s<5f<6d<7p

Каждый период в таблице Менделеева начинается с заполнения нового эн. уровня.

На внешнем эн. уровне не может быть больше 8 электронов. У всех благородных газов ( кроме Не ) внешн.эн. уровень заполнен полностью - состояние этой оболочки самое устойчивое. В хим. реакциях атомы стремятся принять или отдать электроны так, чтобы на внешней оболочке было 8 электронов, при этом образуются ионы. Правило Хунда: При данном значении l ( в пределах одного подуровня ) электрон занимает такое положение, чтобы суммарный спин был бы макс.

Квантовые числа электрона.

Движение электрона в атоме описывается квантовыми числами: главным – n, побочным – l, магнитным – m и спиновым – s. Квантовое числоn – главное. Оно определяет энергию электрона в атоме водорода и одноэлектронных системах (He+, Li2+ и т. д.). n принимает значения от 1 до ∞. Чем меньше n, тем больше энергия взаимодействия электрона с ядром. При n = 1 атом водорода находится в основном состоянии, при n > 1 – в возбужденном. В многоэлектронных атомах электроны с одинаковыми значениями nобразуют слой или уровень, обозначаемый буквами K, L, M, N, O, P и Q. Буква K соответствует первому уровню, L – второму и т. д.

Орбитальное квантовое число l характеризует форму орбиталей и принимает значения от 0 до n– 1. Кроме числовых l имеет буквенные обозначения

l =
l = s p d f g

Электроны с одинаковым значением l образуют подуровень. Квантовое число l определяет квантование орбитального момента количества движения электрона в сферически симметричном кулоновском поле ядра.

Квантовое число ml называют магнитным. Оно определяет пространственное расположение атомной орбитали и принимает целые значения от –l до +lчерез нуль, то есть 2l+ 1 значений. Расположение орбитали характеризуется значением проекции вектора орбитального момента количества движения Mz на какую-либо ось координат (обычно ось z). Орбитали одного подуровня (l = const) имеют одинаковую энергию. Такое состояние называют вырожденным по энергии. Так p-орбиталь – трехкратно, d – пятикратно, а f– семикратно вырождены. Квантовые числа n, lи mlне полностью характеризуют состояние электрона в атоме. Экспериментально установлено, что электрон имеет еще одно свойство – спин. Упрощенно спин можно представить как вращение электрона вокруг собственной оси. Спиновое квантовое число s имеет только два значения s= ±1/2, представляющие собой две проекции углового момента электрона на выделенную ось. Итак, четыре квантовых числа описывают состояние электрона в атоме и характеризуют энергию электрона, его спин, форму электронного облака и его ориентацию в пространстве. При переходе атома из одного состояния в другое происходит перестройка электронного облака, то есть изменяются значения квантовых чисел, что сопровождается поглощением или испусканием атомом квантов энергии. Орбиталь- функция, описывающая ост. электронов в атоме или молекуле и явл. обычной математ.функцией.

СПЕКТР - в физике, совокупность всех значений какой-либо физической величины, характеризующей систему или процесс. Чаще всего пользуются понятиями частотного спектра колебаний (в частности, электромагнитных и акустических), спектра энергий, импульсов и масс частиц (см. Спектроскопия, Масс-спектрометрия). Спектр может быть непрерывным и дискретным.

Ковалентные соединения

Газообразные, жидкие или тв в-ва с низкой температурой плавления <300*С; многие не растворяются в полярных растворителях, большиноство растворимы в неполярных растворителях; р-ры и р-вы не проводят электричество.

Представления о ковалентной связи можно разделить на 3 группы: 1) теория отталкивания валентных электронных пар (ОВЭП); 2) теория валентных связей (ТВС); 3) теория молекулярных орбиталей.

ОВЭП:1. Каждая валентная электронная пара является равнозначной; 2. отталкивание вэп определяет строение молекулы.

ТВС:1. Хим связ возникает между двумя атомами за счет обобществления электронов с разными спинами; 2. при образовании молекулы электронная структура взаимодействующих атомов сохраняется; 3. хим связь располагается в направлении, обеспечивающим максимальное перекрывание электронных облаков; 4. прочность хим связи зависит от степени перекрывания взаимодействующих орбиталей.

Гибридизация– взаимодействие определенной серии атомных орбиталей с образованием новой серии атомных орбиталей с тем же общим числом электронов и со св-вами и энергией промежуточной по сравнению с негибридизованными орбиталями. Sp – линейная форма, 1800; Sp2 – плоский треугольник, 1200; Sp3 – тетраэдрическая, 109,50; Sp3d – тригонально-бипирамидальная, 900, 1200; Sp3d2 – октаэдрическая, 900.

Билет 2

Ионная связь. Ненаправленность и ненасыщенность ионной связи. Степень окисления атомов в молекуле. Поляризуемость ионов и их взаимное поляризующее действие. Влияние степени поляризации ионов на свойства веществ.

Наиболее типичные соеднинения с ионной связью - это тв неорганические соли (в т ч и комплексные), существующие в виде ионных кристаллов. Идеальной «стопроцентной» ионной связи как правило не существует.

Поляризация ионов.Ионная связь возникает между атомами элементов с сильно различающейся электроотрицательностью, которые в результате электронных переходов превращаются в противоположнозаряженные ионы. Электростатическое воздействие на частицу вызывает смещение в ней электрических зарядов, называемой поляризацией. (влияние ионов друг на друга, которое приводит к деформации электронной оболочки иона) Наибольшее смещение испытывают электроны внешнего слоя. Под действием одних и того электрического поля разлиные ионы деформируются в разной степени. Иначе говоря поляризуемостьразличных ионов неодинакова: чем слабее связаны внешние электроны с ядром. Тем легче поляризуется ион, тем сильнее он деформируется в электрическом поле. У ионов одинакового заряда, обладающих аналогичным строением внешнего электронного слоя, поляризуемость возрастает с увеличением размера иона, т к внешние электроны удаляются все дальше от ядра. Превращение атома в катион всегда приводит к уменьшению его размеров. Кроме того избыточный положительный заряд катиона затрудняет деформацию его внешних электронных облаков. Анионы всегда имеют большие размеры, чем нейтральные атомы, а избыточный отрицательный заряд приводит здесь к отталкиванию электронов и, следовательно, ослаблению связи их с ядром => поляризуемость анионов значительно выше поляризуемости катионов. Поляризующая способность ионов т.е. их способность оказывать деформирующее воздействие на другие ионы, также зависит от заряда и размера иона. Чем больше заряд иона, тем сильнее создаваемой им электрическое поле=> больше поляризующая способность. Поляризующая способность ионов одинакового заряда и аналогичного электронного строения падает с увеличением ионного радиуса. Анионы обладают меньшей поляризующей способностью чем катионы.

Таким образом анионы (в сравнении с катионами) характеризуются сильной поляризуемостью и слабой поляризующей способностью, поэтому при взаимодействии разноименных ионов поляризации в соновном подвергается анион. Поляризация ионов оказывает заметное влияние на свойства образуемых ими соединений. Это сказывается на диссоциации солей в водных растворах. Так хлорид бария является сильным элеткролитом и практически полностью диссоциирует, тогда как хлорид ртути почти не диссоциирует на ионы. Это объясняется сильным поляризующим действием иона Hg2+. В отличие от ковалентной связи ионная связь не обладает направленностью. (Направленность связи. Образование ковалентной связи взывается перекрыванием электронных облаков взаимодействующих атомов. Но такое перекрывание возможно только при определенной взаимной ориентации электронных облаков; при этом область перекрывания располоагется в определенном направлении по отношению к взаимодействующим атомам. ) Ненаправленность ионной связи объясняется тем, что электрическое поле иона обладает сферической симметрией, т.е. убывает в любом направлении по одному и тому же закону. Поэтому взаимодействие между ионами осуществляется одинаково независимо от направления. Система из двух зарядов, одинаковых по величине но противополжных по знаку создает в окр пространстве эл поле. Это означает что два разноименных заряда притянувшиеся друг к другу сохранют способность электростатически взаимодействовать с другими ионами. Поэтому ионная связь не обладает насыщаемостью. Т е к данному иону может присоединиться различное число ионов противоположного знака. Это число определяется относит размерами противоположных ионов и тем сто силы притяжения должны преобладать над силами отталкивания. Степень окисления – условный заряд, который возник бы у атома элемента, если бы электроны валентных пар были бы не стянуты, а полностью переданы атому более электроотрицательного элемента.

Билет 3

Планетарная модель строения атома по Э. Резерфорду

1. Атомы химических элементов имею сложное внутреннее строение

2. В центре атома находиться положительно заряженное ядро, занимающее ничтожную часть пространства внутри атома

3. Весь положительный заряд и почти вся масса атома сосредоточены в ядре атома (масса электрона равна 1/1823 а.е.м.)

4. Вокруг ядра по замкнутым орбитам (как планеты вокруг солнца) движутся электроны, их число равно заряду ядра

5. Атом в целом электронейтрален

Обоснованием этой и более поздних моделей – атомные спектры и энергии ионизации атомов.

Ядро состоит из протонов (mp=1836me~1,67*10-27кг, p+1, протон – атом водорода от которого отнят один электрон) нейтронов (mn=1838 me, n0 нейтрон – элементарная незаряженная частица). Электрон (me=9.1*10-28г, е = -1.6*10-19Кл)

МАСС-СПЕКТРОМЕТРИЯ- (масс-спектроскопия), метод исследования вещества путем определения спектра масс частиц, содержащихся в веществе, и их относительного содержания (распространенности). Универсальный аналитический метод, широко применяемый в физике, химии, биологии и др.

МАСС-СПЕКТРОМЕТР, прибор для разделения ионизованных атомов или молекул по их массам. Основан на воздействии электрических и магнитных полей на пучки ионов, движущихся в вакууме. Для регистрации ионных токов обычно используются усилители постоянного тока либо фотопластинки.

Билет 5

Билет 6

1.Периодический закон Д.И. Менделеева как основа развития неорганической химии. Структура периодической системы: периоды, группы и подгруппы. Периодическая система элементов и ее связь со строение атома. Номенклатура основных классов неорганических соеднинений.

1869 – русский ученый Д.И.Менделеев открыл периодический закон и опубликовал свой первый вариант перио-кой системы хим-их элементов «Опыт системы элементов основанный на их атомном весе и хим. сходстве». Формулировка период-ого закона Д.И Менделеева: Свойства простых тел, а также формы и свой-а соед-ий элементов находятся в период-ой зависимости от величин атомных весов элементов.Современная формулировка период-ого закона: Свойства хим. элементов, а также формы и свой-а соеди-ий элементов находятся в период-ой зависимости от величины заряда ядер их атомов. Структура период-ой системы хим. элементов Д.И. Менделеева:Период – горизон-ый ряд элементов, расположенных в порядке возрастания порядкового № от 1 s-элемента (ns1) до 6 p-элемента(ns2np6). Каждый период начинается активным щелочным металлом и заканчивается инертным газом. В пределах периода с возрастанием поряд. № изменяются свой-ва элементов: * Метал. сво-ва ослабевают; *Неметал. сво-ва усиливаются; * Возрастает валентность по кислороду (от 1 до 8); *Уменьшение валентности по водороду (от 4 до 1, начиная с 4 группы);* Сво-ва соед-ий изменяются от основных через амфотерные к кислотным.

В пределах мал. периодов изменение сов-в идет быстрее, чем в больших. У элем-ов больших периодов сначала происходит заполнение не внешнего, а предвнеш. электр-го слоя, поэтому большие периоды делятся на 2 ряда. Элементы четных рядов больших периодов являются металлами, т.к. содержит 1,2 ē на внешнем уровне.

С изменением числа ē на внеш. уровне у элементов одного и того же периода слева на право незначительно, уменьшается R. При увел. числа ē увалич. сила Кулоновского взаимодействия.

Группы – вертик-ые ряды. № группы определяет max валентность элемента, max положит-ую степень окисления, число валентных ē (исключения O и F). Группы делятся на подгруппы. Подгруппа – это вертик-ый ряд элементов, имеющих однотипное электр-ое строение и являющихся электр-ми аналогами. Главные подгрупы (А) содержат элементы s- и p-электронных семейств, которые расположены и в больших и в малых периодах. s-элементы только металлы p-элементы Ме и неМе. Побочные подгруппы (В) содержат элементы d-электронных семейств. В побочных подгруппах элементы только больших периодов, только Ме. Только элементы А подгр.( начин. с 4) образуются летучие соед-я . В пределах А подгруппы металл-ие свойства ↑, а неметалл. ослабевают, т.к ↑ R атома и лёгкость отдачи ē. Самый активный Ме – Fr(франций),самый активный неМе – F(фтор).

Оксиды –это сложные вещества, состоящие из атомов двух элементов, один из которых кислород в степени окисления «-2». Э2Ох-2- общая формула оксида. Номенклатура: «Оксид» + название элемента, образующего оксид в родительном падеже + в скобках римскими цифрами валентность, если для элемента она может быть переменной.

Основания – сложные вещества, в состав которых входят атомы металла и гидроксогруппы OH-. Me+n(OH)n-1– общая формула оснований. Название основанийсоставляют из слова «гидроксид» и названия металла в родительном падеже.

Кислоты -это сложные вещества, в состав которых входят ионы водорода Н+, способные замещаться на металл, и кислотный остаток.Нn+ Х-n- общая формула кислот.

Номенклатура: Бескиcлородные кислоты – название неметалла + «О»+слово водородная. Кислородосодержащие - по степени окисления кислотообразующего элемента или по количеству атомов кислорода в кислоте.

Соли –это сложные вещества, состоящие из катионов металла и анионов кислотного остатка. Общая формула - Mm+nXn+m. Средние (нормальные) – продукт полной нейтрализации кислоты основанием (продукт полного замещения ионов водорода Н+ ионами металла в кислоте. Примеры: NaCl, K2S, Ca(NO3)2, FeSO4, Fe2(SO4)3. Названия средних солей составляют из названия аниона кислотного остатка в именительном падеже и названия катиона в родительном падеже.

Билет 7

Соли, основные свойтсва. Гидролиз солей. Примеры.

Соли – электролиты, диссоциирующие в раств-х с образованием «+» заряженных ионов Ме и «-» заряженного кислотного остатка. Соли бывают: средние (нормальные), кислые( КНСО3), основные (Mg(OH)NO3), двойные (KAl(SO4) сульфат калия-алюминия, смешанные (СаCl2O (Cl-Ca-OCl) хлорид-гипохлорид кальция.

Свойства:

1) соль + основание = новая соль и новое основание.

FeCl3 + 3NaOH = Fe(OH)3↓ + 3NaCl

2). Соль + кислота = новая соль + новая кислота

CaCO3 + 2HCl = CaCl2 + H2O + CO2

3). Соль + соль = 2 новые соли

CuSO4 + BaCl2 = BaSO4↓ + CuCl2

4). Растворы реаг-ют с Ме, стоящими в ряду напр-я левее, чем Ме образованной соли.

CuSO4 + Fe = Cu + FeSO4

5). При нагревании разлагаются

2KNO3 = 2KNO2 + O2

2Cu(NO3)2 =2 CuO + 4 NO2 + O2

Получение: Средние 1. металл + неметалл 2Fe+3Cl2=2FeCl3 2. Металл +кислота=соль +Водород Mg+2HCl=MgCl2+H2 3. Металл1+соль1=металл2=соль2 Zn+CuSo4=Cu+ZnSo4 4. Основной оксид + кислотный оксид =Соль CaO+CO2=CaCO3 5. Взаимодействие кислот с основными и амфотерными оксидами CuO+H2SO4=CuSO4+H2O . Кислые соли: 1. Неполная нейтрализация кислоты основанием. В реакции участвует избыток кислоты и недостаток основания H3PO4 + KOH=KH2PO4+ H2O 2. Средняя соль + кислота = Кислая соль CaCO3+CO2+H2O=Ca(HCO3)2 . Основные соли: 1. Неполная нейтрализация основания кислотой (избыток основания + недостаток кислоты)= основная соль Fe(OH)3+HCl=Fe(OH)2Cl 2. Средняя соль1+щелочь=основная соль + средняя соль2 FeCl2+KOH=FeOHCl+KCl 3. Средняя соль + одноименное основание = основная соль CaSO4+Ca(OH)2=(CaOH)2SO4

Способы получения: взаимодействие кислот с основаниями, взаимодействия металлов с кислотами, взаимодействие кислот с основаниями и амфотерными оксидами, взаимодействие кислот с солями, взаимодействия оснований с кислотными оксидов, взаимодействия соли и соли, основными оксидами с кислотами, металлов с не металлами.

Применение:Ряд солей является соединениями необходимыми в значительных количествах для обеспечения жизнедеятельности животных и растительных организмов, в качестве высотемпературного понизителя вязкости буровых растворов(бихромат натрия).

Гидролиз – реакция обмена м\у растворенным в воде вещ-ом и водой, сопровождающимся изменением рН.

1. Соль образована сильным основанием и слабой кислотой(Na2CO3) – гидролиз по аниону,сводится к присоединениюН к ионам кислотного остатка и отщеплению гидроксид ионов от молекулы воды( среда щелочная, рН>7, фенолфталеин мальновый, лакмус синий)

2. Соль образ-а слабым основание и сильной кислотой (AlCl3)– гидролиз по катиону,сводится к присоединению ОН к ионам Ме и освобождению Н от молекулы воды. (среда кислая, фенолфт. не изменится, лакмус розовый, метилоранж розовый)

3. Соль образована сильным основание и сильной кислотой( NaCl) – гидролиз не происходит, индикаторы окраску не меняют.

4. Соль образована слабым основание и слабой кис-ой (Al2S3) –гидролиз по катиону и аниону,гидролиз происходит нацело, и соль перестает существовать.

Билет 8

Билет 9

Теплота и температура. Основные понятия и фундаментальные законы химии.

Теплота – количество энергии, вызываемое разностью температур между системой и ее окружением, или одной системой и другой. q =с(удельн. теплоем-ть)mD×T.Температура –сво-во, определяющее направление перехода теплоты от одного объекта к другому.

Стехиометрические законы - основные законы стехиометрии, включающие законы количественных соотношений между реагирующими веществами с помощью уравнений химических реакций, вывод формул химических соединений, составляют раздел химии, называемый стехиометрией.В основу составления химических уравнений положен метод материального баланса, основанный на законе сохранения массы Закон сохранения массы веществ (Ломоносов1748-1756гг): Масса реагирующих веществ равна массе продуктов реакции.Коэффициенты перед формулами химических соединений называются стехиометрическими. Закон постоянства состава (Пруст,1801-1808гг):Химическое соединение, имеющее молекулярное строение, независимо от метода получения характеризуется постоянным составом.Закон кратных отношений(Дальтон 1808г): Если два элемента образуют между собой несколько молекулярных соединений, то масса одного элемента, приходящаяся на одну и ту же массу другого, относятся между собой как небольшие целые числа.Закон простых объемных отношений: При равных условиях объемы вступающих в реакцию газов относятся друг к другу и к объемам образующихся газообразных продуктов как небольшие целые числа. Закон Авогадро (Авогдро1811г):В равных объемах любых газов, взятых при одинаковых условиях, содержится одинаковое число молекул.1.Одинаковое число молекул любых газов при одинаковых условиях занимают одинаковый объем. 2.Относительная плотность одного газа по другому равна отношению их молярных масс. Следствие из закона Авогадро:1)в молях считают те частицы, кол-во которых очень велико: атомы, молекулы, ионы.2) При нормальных условиях (0 С, 101,3 кПа) 1моль газа занимает V=22,4 л. Число структурных единиц, находящихся в 1моле газа названо в честь Авогадро и равно NA=6,02*10^23

3Массы веществ, вступивших в реакцию относятся друг к другу как их молярные массы. Плотность одного газа по другому =M1/M2=m1/m2 4) 1 моль - 6,02*10^23

Закон простых объёмных отношений(Гей-Люссак 1805г.)

Объёмы газов, вступающих в реакцию, относится друг к другу, а также к объёмам газообразных продуктов реакции, как небольшие целые числа.

Билет 10

1.Развитие представлений о строении атома. Составные части атома – ядро (протоны, нейтроны), электроны, их заряд и масса.

Атом – наименьшая (неделимая химическим путем) часть элемента, сохраняющая все свойства, определенные зарядом ядра и электронной оболочкой. Атомный номер Z равен числу протонов в атомном ядре. В электронной оболочке электронейтрального атома содержится Z электронов. Массовое число A равно числу протонов Z и числу нейтронов N в атомном ядре; A = Z + N.

Нейтроны и протоны – элементарные частицы, имеющие массу ок 1 аем. Протоны - положительно заряженные микрочастицы с массой. 1 а.е.м и зарядом 1,6*10-19 Кл., условно принятым за единицу положительного заряда. Нейтроны - нейтральные частицы с массой 1 а.е.м. История:

V в до н.э. – Демокрит вводит понятие атом-неделимый.

1896-Беккеркль открывает радиоактивность.

1897- Томсон – электрон. 1903- модель атома Томсона. «однородный шар из +заряженного вещества, в кот. Находятся электроны.

1911- Модель атома Резерфорда. Идея опыта: наблюдать отклонения заряженных частиц, пролетающих мимо атома. Результат: 1.Большинство частиц не отклоняются. 2.Небольшое кол-во частиц(1 из 20000) резко откл. назад. Объяснение: 1.В атоме много пустоты. 2.+заряд сосредоточен в объеме намного меньше объема атома. Вывод: Планетарная модель. Атом состоит из ядра и эл. оболочки. В центре атома находится положительно заряженное ядро, занимающее ничтожно малый объем атома. Весь положительный и вся масса атома сосредоточены в ядре.Заряд соостветствует кол-ву протонов в ядре и соостветствует порядковому номеру в таблице Менделеева и кол-ву электронов в атоме. Вокруг ядра вращаются электроны и их число равняется "+" заряду ядра. Однако такой атом не может быть устойчивым. Электроны не должны терять энергию, излучая ее, и упасть на ядро. В действительности электронные оболочки всех атомов устойчивы.

Билет 11

1. Понятие о квантовой механике. Квантовый характер излучения и поглощения энергии. Уравнение Планка. Атомные спектры как характеристики энергетических уровней электронов. Корпускулярно-волновая природа электрона. Уравнение де Бройля.

Распределение электронов в многоэлектронных атомах основано на трех положениях: принципе минимума энергии, принципе Паули, правиле Хунда.

Принцип Паули: в атоме не может быть электронов ,имеющих одинаковый набор всех четырех квантовых чисел (на одной орбитали может быть не более двух электронов с различными спинами). Каждый подуровень содержит 2l + 1 орбитали, на которых размещаются не более 2(2l + 1) электронов. Отсюда следует, что емкость s-орбиталей – 2, p-орбиталей – 6, d-орбиталей – 10 и f-орбиталей – 14 электронов. Два электрона, находящихся на одной орбитали и обладающих противоположно направленными спинами , называют спаренными, электроны ,расположенные по одному на орбиталях- неспаренные. Принцип минимума энергии: Электрон в основном (невозб.) состоянии в атоме занимает такое положение, чтобы енергия была бы минимальной. Энергия электрона главным образом определяется суммой (n+l ). Правило Клечковского: 1) В первую очередь заполняется та орбиталь где (n+l ) min

2) Если (n+l ) для нескольких орбиталей одинаковы, то в первую очередь заполняется та орбиталь, где n- меньше.

1s<2s<2p<3s<3p<4s<3d <4p<5s<4d<5p<6s<4f<5d<6p<7s<5f<6d<7p

Каждый период в таблице Менделеева начинается с заполнения нового эн. уровня.

На внешнем эн. уровне не может быть больше 8 электронов. У всех благородных газов ( кроме Не ) внешн.эн. уровень заполнен полностью - состояние этой оболочки самое устойчивое. В хим. реакциях атомы стремятся принять или отдать электроны так, чтобы на внешней оболочке было 8 электронов, при этом образуются ионы. Правило Хунда: При данном значении l ( в пределах одного подуровня ) электрон занимает такое положение, чтобы суммарный спин был бы макс.

Квантовые числа электрона.

Движение электрона в атоме описывается квантовыми числами: главным – n, побочным – l, магнитным – m и спиновым – s. Квантовое число n – главное. Оно определяет энергию электрона в атоме водорода и одноэлектронных системах (He+, Li2+ и т. д.). n принимает значения от 1 до ∞. Чем меньше n, тем больше энергия взаимодействия электрона с ядром. При n = 1 атом водорода находится в основном состоянии, при n > 1 – в возбужденном. В многоэлектронных атомах электроны с одинаковыми значениями nобразуют слой или уровень, обозначаемый буквами K, L, M, N, O, P и Q. Буква K соответствует первому уровню, L – второму и т. д.

Орбитальное квантовое число l характеризует форму орбиталей и принимает значения от 0 до n– 1. Кроме числовых l имеет буквенные обозначения

l =
l = s p d f g

Электроны с одинаковым значением l образуют подуровень. Квантовое число l определяет квантование орбитального момента количества движения электрона в сферически симметричном кулоновском поле ядра.

Квантовое число ml называют магнитным. Оно определяет пространственное расположение атомной орбитали и принимает целые значения от –l до +lчерез нуль, то есть 2l+ 1 значений. Расположение орбитали характеризуется значением проекции вектора орбитального момента количества движения Mz на какую-либо ось координат (обычно ось z). Орбитали одного подуровня (l = const) имеют одинаковую энергию. Такое состояние называют вырожденным по энергии. Так p-орбиталь – трехкратно, d – пятикратно, а f– семикратно вырождены. Квантовые числа n, lи mlне полностью характеризуют состояние электрона в атоме. Экспериментально установлено, что электрон имеет еще одно свойство – спин. Упрощенно спин можно представить как вращение электрона вокруг собственной оси. Спиновое квантовое число s имеет только два значения s= ±1/2, представляющие собой две проекции углового момента электрона на выделенную ось. Итак, четыре квантовых числа описывают состояние электрона в атоме и характеризуют энергию электрона, его спин, форму электронного облака и его ориентацию в пространстве. При переходе атома из одного состояния в другое происходит перестройка электронного облака, то есть изменяются значения квантовых чисел, что сопровождается поглощением или испусканием атомом квантов энергии. Орбиталь- функция, описывающая ост. электронов в атоме или молекуле и явл. обычной математ.функцией.

СПЕКТР - в физике, совокупность всех значений какой-либо физической величины, характеризующей систему или процесс. Чаще всего пользуются понятиями частотного спектра колебаний (в частности, электромагнитных и акустических), спектра энергий, импульсов и масс частиц (см. Спектроскопия, Масс-спектрометрия). Спектр может быть непрерывным и дискретным.

Билет 12

Билет 14

Билет 15

Ионная связь. Ненаправленность и ненасыщенность ионной связи. Степень окисления атомов в молекуле. Поляризуемость ионов и их взаимное поля

Наши рекомендации