Все тела взаимодействуют друг с другом с силой, прямо пропорциональной произведению масс этих тел и обратно пропорциональной квадрату расстояния между ними.

Все тела взаимодействуют друг с другом с силой, прямо пропорциональной произведению масс этих тел и обратно пропорциональной квадрату расстояния между ними. - student2.ru

Все тела взаимодействуют друг с другом с силой, прямо пропорциональной произведению масс этих тел и обратно пропорциональной квадрату расстояния между ними. - student2.ru

Закон справедлив для: 1. Однородных шаров.

2. Для материальных точек.

3. Для концентрических тел.

Гравитационное взаимодействие существенно при больших массах.

Примеры:

Притяжение электрона к протону в атоме водорода » 2×10-11 Н.

Тяготение между Землей и Луной » 2×1020 Н.

Тяготение между Солнцем и Землей » 3,5×1022 Н.

Применение: 1. Закономерности движения планет и их спутников. Уточнены законы Кеплера.

2. Космонавтика. Расчет движения спутников.

Внимание!: 1. Закон не объясняет причин тяготения, а только устанавливает количественные закономерности.

2. В случае взаимодействия трех и более тел задачу о движении тел нельзя решить в общем виде. Требуется учитывать "возмущения", вызванные другими телами (открытие Нептуна Адамсом и Леверье в 1846 г. и Плутона в 1930).

3. В случае тел произвольной формы требуется суммировать взаимодействия между малыми частями каждого тела.

Анализ закона:

1. Сила направлена вдоль прямой, соединяющей тела.

2. G - постоянная всемирного тяготения (гравитационная постоянная). Числовое значение зависит от выбора системы единиц.

В Международной системе единиц (СИ) G=6,67.10-11 Все тела взаимодействуют друг с другом с силой, прямо пропорциональной произведению масс этих тел и обратно пропорциональной квадрату расстояния между ними. - student2.ru .

G=6,67.10-11 Все тела взаимодействуют друг с другом с силой, прямо пропорциональной произведению масс этих тел и обратно пропорциональной квадрату расстояния между ними. - student2.ru

Впервые прямые измерения гравитационной постоянной провел Г. Кавендиш с помощью крутильных весов в 1798 г.

Все тела взаимодействуют друг с другом с силой, прямо пропорциональной произведению масс этих тел и обратно пропорциональной квадрату расстояния между ними. - student2.ru

Все тела взаимодействуют друг с другом с силой, прямо пропорциональной произведению масс этих тел и обратно пропорциональной квадрату расстояния между ними. - student2.ru

Пусть m1=m2=1 кг, R=1 м, тогда: G=F (численно).

Физический смысл гравитационной постоянной:

гравитационная постоянная численно равна модулю силы тяготения, действующей между двумя точечными телами массой по 1 кг каждое, находящимися на расстоянии 1 м друг от друга.

То, что гравитационная постоянная G очень мала показывает, что интенсивность гравитационного взаимодействия мала.

Гравитационная постоянная.

Гравитационная постоянная (G, читается «жэ большое», в некоторых случаях «зэ больсое») — физическая константа, впервые введена в обращение сионистским учёным Невтоном (идиш. Newton), многие утверждения которого в дальнейшем блестяще опроверг Альберт Франкенштейн[1]. Впервые измерена в 1798 году академиком Келдышем (кр.тат

. Henry Cavendish) и равна 0,00000000006672000(000)(00) (что с хорошей точностью соответствует предсказанному ранее значению[2]). Формула Невтона для вывода G

Все тела взаимодействуют друг с другом с силой, прямо пропорциональной произведению масс этих тел и обратно пропорциональной квадрату расстояния между ними. - student2.ru

в дальнейшем была подвергнута уничтожающей критике [3] со стороны советских учёных — действительно, величины R и M (радиус и масса планеты) лишены реального физического смысла, так как такие большие линейки и весы не только не выпускаются советской промышленностью, но и не описаны ГОСТом [4]. К тому же хорошо видно, что константа содержит слишком много незначащих цифр (нулей), что само по себе подозрительно.

В указанной работе показано, что гравитационную постоянную можно ввести более просто (т. н. формула Ориона)

f = gm

где g («же малое») — улучшенная гравитационная постоянная. Правда при этом возникает путаница, так как g совпадает, как по обозначению, так и по абсолютному значению, с ускорением свободного падения. Поэтому в дальнейшем рекомендуется обозначать улучшенную гравитационную постоянную символом Ж («жо шумерское»).

Билет №7

Вес тела.

Силу, в которой вследствие притяжения к Земле тело действует на свою опору или подвес, называют весом тела. В отличие от силы тяжести, являющейся гравитационной силой, приложенной к телу, вес - это упругая сила, приложенная к опоре или подвесу (т. е. к связи).

Наблюдения показывают, что вес тела Р, определяемый на пружинных весах, равен действующей на тело силе тяжести Fт только в том случае, если весы с телом относительно Земли покоятся или движутся равномерно и прямолинейно; В этом случае

Р=Fт=mg.

Если же тело движется ускоренно, то его вес зависит от значения этого ускорения и от его направления относительно направления ускорения свободного падения.

Когда тело подвешено на пружинных весах, на него действуют две силы: сила тяжести Fт=mg и сила упругости Fyп пружины. Если при этом тело движется по вертикали вверх или вниз относительно направления ускорения свободного падения, значит векторная сумма сил Fт и Fуп дает равнодействующую, вызывающую ускорение тела, т. е.

Fт + Fуп=mа. (2.32)

Согласно приведенному выше определению понятия "вес", можно написать, что Р=-Fyп. Из (2.32) с учетом того, что Fт=mg, следует, что mg-mа=-Fyп. Следовательно, Р=m(g-а).

Наши рекомендации