Вопрос 22.Карбоновые кислоты ароматического ряда: получение ,свойство ,применение.

Способы получения одноосновных карбоновых кислот ароматического ряда.Одноосновные карбоновые кислоты ароматического ряда могут быть получены всеми общими способами, известными для кислот жирного ряда.1 Окисление алкильных групп гомологов бензола. Это один из наиболее часто применяемых способов получения ароматических кислот: Вопрос 22.Карбоновые кислоты ароматического ряда: получение ,свойство ,применение. - student2.ru

Окисление проводят либо при кипячении углеводорода с щелочным раствором перманганата калия, либо при нагревании в запаянных трубках с разбавленной азотной кислотой. Как правило, этот метод дает хорошие результаты. Осложнения бывают только в тех случаях, когда при действии окислителей разрушается бензольное кольцо.

2.Окисление ароматических кетонов. Ароматические кетоны легко получаются реакцией Фриделя — Крафтса. Окисление обычно ведут с помощью гипохлоритов по схеме: Вопрос 22.Карбоновые кислоты ароматического ряда: получение ,свойство ,применение. - student2.ru Однако могут быть использованы и другие окислители. Ацетопроизводные окисляются легче, чем углеводороды.

3.Гидролиз нитрилов: Вопрос 22.Карбоновые кислоты ароматического ряда: получение ,свойство ,применение. - student2.ru Этот способ широко применяется в жирном ряду. В ароматическом ряду исходные нитрилы получают из диазосоединений, из галогенопроизводных обменом с цианидом меди в пиридине или сплавлением сульфонатов с цианидом калия. Нитрилы кислот с нитрильной группой в боковой цепи получают обменной реакцией из галогенопрои

Нитросоединения

Нитросоединения — органические соединения, содержащие одну или несколько нитрогрупп —NO2. Под нитросоединениями обычно подразумевают C-нитросоединения, в которых нитрогруппа связана с атомом углерода. O-нитросоединения и N-нитросоединения выделяют в отдельные классы — нитроэфиры (органические нитраты) и нитрамины[1].

В зависимости от радикала R, различают алифатические (предельные и непредельные), ациклические, ароматические и гетероциклические нитросоединения. По характеру углеродного атома, с которым связана нитрогруппа, нитросоединения подразделяются на первичные, вторичные и третичные.

Нитрогруппа имеет строение, промежуточное между двумя предельными резонансными структурами:

Вопрос 22.Карбоновые кислоты ароматического ряда: получение ,свойство ,применение. - student2.ru

Физические свойства. Простейшие нитроалканы-бесцв. жидкости. Физ. св-ва нек-рых алифатических нитросоединений приведены в таблице. Ароматические нитросоединения-бесцв. или светло-желтые высококипящие жидкости или низкоплавкие твердые в-ва, обладающие характерным запахом, плохо раств. в воде, как правило, перегоняются с паром.

Химические свойства

По химическому поведению нитросоединения обнаруживают определенное сходство с азотной кислотой. Это сходство проявляется при окислительно-восстановительных реакциях.

· Восстановление нитросоединений (Реакция Зинина):

Вопрос 22.Карбоновые кислоты ароматического ряда: получение ,свойство ,применение. - student2.ru

· Реакции конденсации

· Таутомерия нитросоединений.

Применение. Поли-нитросоединения, особенно ароматические, применяют в качестве взрывчатых веществ и в меньшей степени как компонентыракетных топлив. Алифатические нитросоединения используют как р-рители в лакокрасочной пром-сти и в произ-ве полимеров, в частности эфиров целлюлозы; для очистки минер. масел; депарафинизации нефти и др.

Ряд нитросоединений находят применение в качестве биологически активных в-в. Так, эфиры фосфорной к-ты, содержащие нитроарильный фрагмент,-инсектициды; производные 2-нитро-1,3-пропандиола и 2-нитростирола - фунгициды; производные 2,4-динитрофенола - гербициды; a-нитрофураны -важнейшие антибактериальные препараты, на их основе созданы лекарства, обладающие широким спектром действия (фуразолидин и др.). Нек-рые ароматические нитросоединения-душистые в-ва.

Нитросоединения- полупродукты в произ-ве синтетич. красителей, полимеров, моющих препаратов и ингибиторов коррозии; смачивающих, эмульгирующих, диспергирующих и флотац. агентов; пластификаторов и модификаторов полимеров, пигментов и пр. Они находят широкое применение в орг. синтезе и в качестве модельных соед. в теоретич. орг. химии.

26.Органические соединения фосфора

Вопрос 22.Карбоновые кислоты ароматического ряда: получение ,свойство ,применение. - student2.ru

Фосфорорганические соединения, обширный класс органических соединений, содержащих в своём составе фосфор. Различают Ф. с., в молекулах которых фосфор непосредственно связан с углеродом, и Ф. с., в которых фосфор связан с органической частью молекулы через гетероатом – кислород, азот, серу (это главным образом эфиры и др. производные кислот фосфора). Ф. с. второго типа широко распространены в природе преимущественно в виде эфиров фосфорной, пирофосфорной и трифосфорной кислот (см.Фосфорные кислоты); к ним относятся нуклеиновые кислоты, многие важные коферменты, аденозинтрифосфат (см. Аденозинфосфорные кислоты) – переносчик энергии в живых организмах, некоторые витамины. В 60-е гг. 20 в. в природе были найдены Ф. с., содержащие связь фосфор – углерод, например (b-аминоэтилфосфоновая кислота (цилиатин).

Применение. Ф. с. используются в технике, сельском хозяйстве, медицине, а также в научных исследованиях. Больших масштабов достигло производство фосфорорганических пестицидов(инсектицидов, акарицидов, дефолиантов и др.). Однако, отличаясь высокой эффективностью, пестициды в большинстве своём токсичны для людей и животных, поэтому их применение требует мер предосторожности; вместе с тем они не накапливаются во внешней среде и тем выгодно отличаются от пестицидов др. типов. В медицине Ф. с. используются главным образом в офтальмологии; большое значение имеют также биологически важные фосфаты, например аденозинтрифосфат, кокарбоксилаза, ряд витаминов. Как комплексообразователи Ф. с. употребляют в экстракционном обогащении руд (в производстве урана и др. металлов). Многие Ф. с. применяют в качестве присадок к смазочным маслам, повышающих их эксплуатационные свойства (см. Присадки),компонентов пластмасс и волокон, придающих негорючесть (т. н. антипиренов),растворителей, гидравлических жидкостей и др. Получила развитие также область фосфорорганических комплексонов, используемых для разделения, например, металлов и для др. целей.

Получение. В синтезе Ф. с. большое значение имеют методы образования связи С–Р. К ним относятся: Арбузова реакция: (PO)3P + R’X (R’PO (OR)2 + RX; реакция Михаэлиса – Беккера: (RO)2PONa + R’X (R’PO (OR)2 + NaX; синтезы с металлоорганическими соединениями, например: PСl3 + SRMgX (R3P + 3MgXCl; фосфорилирование по типу реакции Фриделя – Крафтса: С6H6 + PСl3 Вопрос 22.Карбоновые кислоты ароматического ряда: получение ,свойство ,применение. - student2.ru С6H5PСl2 + HСl; присоединение пятихлористого фосфора к олефинам: С6H5СH = СH2 + 2PCl5 (C6H5CHCl – СH2PСl4×PCl5; алкилирование элементарного фосфора, например: 3RCl + 2P Вопрос 22.Карбоновые кислоты ароматического ряда: получение ,свойство ,применение. - student2.ru RPCl2 + R2PCl

24 вопрос.Фенол

ФЕНОЛЫ – класс органических соединений. Содержат одну или несколько группировок С–ОН, при этом атом углерода входит в состав ароматического (например, бензольного) кольца.

Химические свойства фенола

Фенол представляет собой кристаллическое вещество белого цвета, с характерным резким сладковато-приторным запахом, которое легко окисляется при взаимодействии с воздухом, приобретая сначала розоватый, а спустя некоторое время насыщенный бурый цвет. Особенностью фенола является прекрасная растворимость не только в воде, но и в спирте, щелочной среде, бензоле и ацетоне. Кроме этого, фенол обладает очень низкой температурой плавления и легко переходит в жидкое состояние при температуре +42°C, а также имеет слабые кислотные свойства. Поэтому при взаимодействии со щелочами фенол образует соли, именуемые фенолятами.

Способы получения фенола

В чистом виде в природе фенол не встречается, он является искусственным продуктом органической химии. В настоящее время существует три основных способа получения фенола в промышленных объемах. --Основная доля его производства приходится на так называемый кумпольный метод, который подразумевает окисление воздухом ароматического органического соединения изопропилбензола. --Для производства также используется метилбензол (толуол), в результате окисления которого образуется данное химическое вещество и бензойная кислота. Кроме этого, в некоторых видах промышленности, таких, как производство металлургического кокса, фенол выделяется из каменноугольной смолы. Однако этот способ получения является нерентабельным из-за повышенной энергоемкости. Среди последних достижений химической промышленности – получение фенола путем взаимодействия бензола и уксусной кислоты, а также окислительное хлорирование бензола.

Область применения фенола\Первоначально фенол использовался для производства различного рода красителей, благодаря своему свойству изменять цвет в процессе окисления с бледно-розового до бурого оттенка. Это химическое вещество вошло в состав многих видов синтетических красок. Кроме этого, свойство фенола уничтожать бактерии и микроорганизмы, было взято на вооружение в кожевенном производстве при дублении шкур животных. Позже фенол успешно использовался в медицине как одно из средств обеззараживания и дезинфекции хирургических инструментов и помещений, а в качестве 1,4-процентного водного раствора - как болеутоляющее и антисептик для внутреннего и наружного применения. В настоящее время основное предназначение фенола – химическая промышленность, где это вещество применяется для изготовления пластмассы, фенолформальдегидных смол, таких искусственных волокон, как капрон и нейлон, а также различных антиоксидантов. Кроме этого, фенол применяется для производства пластификаторов, присадок для масел, является одним из компонентов, входящих в состав препаратов по защите растений.

Наши рекомендации