Тема 2: Характеристика состояния вещества

Тема 2: Характеристика состояния вещества

1 Агрегатные состояния вещества.

2 Силы межмолекулярного взаимодействия.

3 Свойства жидкостей

Агрегатные состояния вещества.

Принято считать, что вещество может находиться в одном из трёх агрегатных состояниях:

1. Состояние твёрдого тела,

2. Жидкое состояние и

3. Газообразное состояние.

Часто выделяют четвёртое агрегатное состояние – плазму.

Иногда, состояние плазмы считают одним из видов газообразного состояния.

Плазма - частично или полностью ионизированный газ, чаще всего существующий при высоких температурах.

Плазма является самым распространённым состоянием вещества во вселенной, поскольку материя звёзд пребывает именно в этом состоянии.

Для каждого агрегатного состояния характерны особенности в характере взаимодействия между частицами вещества, что влияет на его физические и химические свойства.

Каждое вещество может пребывать в разных агрегатных состояниях. При достаточно низких температурах все вещества находятся в твёрдом состоянии. Но по мере нагрева они становятся жидкостями, затем газами. При дальнейшем нагревании они ионизируются (атомы теряют часть своих электронов) и переходят в состояние плазмы.

Тема 2: Характеристика состояния вещества - student2.ru

Газ

Газообразное состояние (от нидерл. gas, восходит к др.-греч. Χάος) характеризующееся очень слабыми связями между составляющими его частицами.

Образующие газ молекулы или атомы хаотически движутся и при этом преобладающую часть времени находятся на больших (в сравнении с их размерами) расстояниях друг от друга. Вследствие этого силы взаимодействия между частицами газа пренебрежимо малы.

Тема 2: Характеристика состояния вещества - student2.ru

Основной особенностью газа является то, что он заполняет все доступное пространство, не образуя поверхности. Газы всегда смешиваются. Газ - изотропное вещество, то есть его свойства не зависят от направления.

При отсутствии сил тяготения давление во всех точках газа одинаково. В поле сил тяготения плотность и давление не одинаковы в каждой точке, уменьшаясь с высотой. Соответственно, в поле сил тяжести смесь газов становится неоднородной. Тяжелые газы имеют тенденцию оседать ниже, а более легкие - подниматься вверх.

Газ имеет высокую сжимаемость - при увеличении давления возрастает его плотность. При повышении температуры расширяются.

При сжатии газ может перейти в жидкость, но конденсация происходит не при любой температуре, а при температуре, ниже критической температуры. Критическая температура является характеристикой конкретного газа и зависит от сил взаимодействия между его молекулами. Так, например, газ гелий можно ожижить только при температуре, ниже от 4,2 К (-1143 С). (1 кельвин=-272,15 С)

Существуют газы, которые при охлаждении переходят в твердое тело, минуя жидкую фазу. Превращения жидкости в газ называется испарением, а непосредственное превращение твердого тела в газ – сублимацией переход водяного пара в иней, снег).

Твёрдое тело

Состояние твёрдого тела в сравнении с другими агрегатными состояниями характеризуется стабильностью формы.

Различают кристаллические и аморфные твёрдые тела.

Формы кристаллов

Каждое вещество образует кристаллы совершенно определённой формы.

Разнообразие кристаллических форм может быть сведено к семи группам:

1. Триклинная (параллелепипед-шестигранник с параллельными и равными противоположными гранями),

2.Моноклинная (призма (многогранник, две грани которого являются конгруэнтными (равными) многоугольниками, лежащими в параллельных плоскостях, а остальные грани — параллелограммами, имеющими общие стороны с этими многоугольниками) с параллелограммом (четырёхугольник с параллельными и равными противоположными сторонами) в основании),

3. Ромбическая (прямоугольный параллелепипед),

4. Тетрагональная (прямоугольный параллелепипед с квадратом в основании),

5. Тригональная (бипирадмида),

6. Гексагональная(гекса - шестиугольная) (призма с основанием правильного центрированного шестиугольника),

7. Кубическая (куб-правильный многогранник, каждая грань которого представляет собой квадрат).

Тема 2: Характеристика состояния вещества - student2.ru

Многие вещества, в частности железо, медь, алмаз, хлорид натрия кристаллизуются в кубической системе. Простейшими формами этой системы являются куб, октаэдр, тетраэдр (правильный многогранник, имеет 4 грани, которые являются правильными треугольниками).

Магний, цинк, лёд, кварц кристаллизуются в гексагональной системе. Основные формы этой системы – шестигранные призмы и бипирамида.

Природные кристаллы, а также кристаллы, получаемые искусственным путём, редко в точности соответствуют теоретическим формам. Обычно при затвердевании расплавленного вещества кристаллы срастаются вместе и потому форма каждого из них оказывается не вполне правильной.

Однако как бы неравномерно не происходило развитие кристалла, как бы ни была искажена его форма, углы, под которыми сходятся грани кристалла у одного и того же вещества остаются постоянными.

Анизотропия

Особенности кристаллических тел не ограничиваются только формой кристаллов. Хотя вещество в кристалле совершенно однородно, многие из его физических свойств – прочность, теплопроводность, отношение к свету и др. – не всегда одинаковы по различным направлениям внутри кристалла. Эта важная особенность кристаллических веществ называется анизотропией.

Анизотропи́я (от др.-греч. ἄνισος — неравный и τρόπος — направление) — различие свойств среды (например, физических: упругости, электропроводности, теплопроводности, показателя преломления, скорости звука или света и др.) в различных направлениях внутри этой среды; в противоположность изотропии.

Самостоятельно разобрать типы химических связей

Атомные кристаллические решётки

В узлах атомных решёток находятся атомы. Они связаны друг с другом ковалентной связью.

Веществ, обладающих атомными решётками, сравнительно мало. К ним принадлежат алмаз, кремний и некоторые неорганические соединения.

Эти вещества характеризуются высокой твёрдостью, они тугоплавки и нерастворимы практически ни в каких растворителях. Такие их свойства объясняются прочностью ковалентной связи.

Молекулярные кристаллические решётки

В узлах молекулярных решёток находятся молекулы. Они связаны друг с другом межмолекулярными силами.

Веществ с молекулярной решёткой очень много. К ним принадлежат неметаллы, за исключением углерода и кремния, все органические соединения с не ионной связью и многие неорганические соединения.

Силы межмолекулярного взаимодействия значительно слабее сил ковалентной связи, поэтому молекулярные кристаллы имеют небольшую твёрдость, легкоплавки и летучи.

Ионные кристаллические решётки

В узлах ионных решёток располагаются, чередуясь положительно и отрицательно заряженные ионы. Они связаны друг с другом силами электростатического притяжения.

К соединениям с ионной связью, образующим ионные решётки, относится большинство солей и небольшое число оксидов.

По прочности ионные решётки уступают атомным, но превышают молекулярные.

Ионные соединения имеют сравнительно высокие температуры плавления. Летучесть их в большинстве случаев не велика.

Металлические кристаллические решётки

В узлах металлических решёток находятся атомы металла, между которыми свободно движутся общие для этих атомов электроны.

Тема 2: Характеристика состояния вещества - student2.ru

Наличием свободных электронов в кристаллических решётках металлов можно объяснить их многие свойства: пластичность, ковкость, металлический блеск, высокую электро- и теплопроводность

Существуют вещества, в кристаллах которых значительную роль играют два рода взаимодействия между частицами. Так, в графите атомы углерода связаны друг с другом в одних направлениях ковалентной связью, а в других – металлической. Поэтому решётку графита можно рассматривать и как атомную, и как металлическую.

Во многих неорганических соединениях, например, в BeO, ZnS, CuCl, связь между частицами, находящимися в узлах решётки, является частично ионной, а частично ковалентной. Поэтому решётки подобных соединений можно рассматривать как промежуточные между ионными и атомными.

Аморфное состояние вещества

Свойства аморфных веществ

Среди твёрдых тел встречаются такие, в изломе которых нельзя обнаружить никаких признаков кристаллов. Например, если расколоть кусок обыкновенного стекла, то его излом окажется гладким и, в отличие от изломов кристаллов, ограничен не плоскими, а овальными поверхностями.

Подобная же картина наблюдается при раскалывании кусков смолы, клея и некоторых других веществ. Такое состояние вещества называется аморфным.

АМОРФНОЕ СОСТОЯНИЕ, состояние твердого тела, характеризующееся изотропией физических свойств, обусловленной неупорядоченным расположением атомов и молекул. В отличие от кристаллического состояния (смотри Кристаллы), переход из аморфного состояния в жидкое происходит постепенно. Критическая точка, называемая температурой плавления, отсутствует. В аморфном состоянии находятся стекла, смолы, пластмассы и др.

Различие между кристаллическими и аморфными телами особенно резко проявляется в их отношении к нагреванию.

В то время как кристаллы каждого вещества плавятся при строго определённой температуре и при той же температуре происходит переход из жидкого состояния в твёрдое, аморфные тела не имеют постоянной температуры плавления. При нагревании аморфное тело постепенно размягчается, начинает растекаться и, наконец, становится совсем жидким. При охлаждении оно также постепенно затвердевает.

В связи с отсутствием определённой температуры плавления аморфные тела обладают другой способностью: многие из них подобно жидкостям текучи, т.е. при длительном действии сравнительно небольших сил они постепенно изменяют свою форму. Например, кусок смолы, положенный на плоскую поверхность, в теплом помещении на несколько недель растекается, принимая форму диска.

Строение аморфных веществ

Различие между кристаллическим и аморфным состоянием вещества состоит в следующем.

Упорядоченное расположение частиц в кристалле, отражаемое элементарной ячейкой, сохраняется на больших участках кристаллов, а в случае хорошо образованных кристаллов – во всём их объёме.

В аморфных телах упорядоченность в расположении частиц наблюдается только на очень малых участках. Кроме того, в ряде аморфных тел даже эта местная упорядоченность носит лишь приблизительный характер.

Тема 2: Характеристика состояния вещества - student2.ru

Это различие можно коротко сформулировать следующим образом:

· структура кристаллов характеризуется дальним порядком,

· структура аморфных тел – ближним.

Примеры аморфных веществ.

К стабильно-аморфным веществам принадлежат стекла (искусственные и вулканические), естественные и искусственные смолы, клеи, парафин, воск и др.

Жидкости

Металлы

Если вещество – металл, то часть электронов его атомов становится общими для всех атомов. Эти электроны свободно движутся между атомами, связывая их друг с другом.

Вещества с ионным строением

Если вещество имеет ионное строение, то образующие его ионы удерживаются друг около друга силами электростатического притяжения.

Свойства жидкостей

Жидкое состояние является промежуточным между газообразным и кристаллическим. По одним свойствам жидкости близки к газам, по другим – к твёрдым телам.

С газами жидкости сближает, прежде всего, их изотропность и текучесть. Последняя обуславливает способность жидкости легко изменять свою форму.

Однако высокая плотность и малая сжимаемость жидкостей приближает их к твёрдым телам.

Жидкость может обнаруживать механические свойства, присущие твёрдому телу. Если время действия силы на жидкость мало, то жидкость проявляет упругие свойства. Например, при резком ударе палкой о поверхность воды палка может вылететь из руки или сломаться.

Камень можно бросить так, что он при ударе о поверхность воды отскакивает от неё, и лишь совершив несколько скачков, тонет в воде.

Если же время воздействия на жидкость велико, то вместо упругости проявляется текучесть жидкости. Например, рука легко проникает внутрь воды.

Способность жидкостей легко изменять свою форму говорит об отсутствии в них жёстких сил межмолекулярного взаимодействия.

В то же время низкая сжимаемость жидкостей, обусловливающая способность сохранять постоянный при данной температуре объём, указывает на присутствиехотя и не жёстких, но всё же значительных сил взаимодействия между частицами.

Тема 2: Характеристика состояния вещества

1 Агрегатные состояния вещества.

2 Силы межмолекулярного взаимодействия.

3 Свойства жидкостей

Наши рекомендации