Передача электроэнергии на большие расстояния 17 страница

Электронные вычислительные машины, как известно, совершили настоящий переворот в области применения математики для решения важнейших проблем физики, механики, астрономии, химии и других точных наук. Те процессы, которые прежде совершенно не поддавались просчитыванию, стали вполне успешно моделироваться на вычислительных машинах. Решение любой задачи сводилось при этом к следующим последовательным шагам: 1) исходя из значения физической, химической и прочей сущности какого‑либо исследуемого процесса формулировалась задача в виде алгебраических формул, дифференциальных или интегральных уравнений или других математических соотношений; 2) с помощью численных методов задача сводилась к последовательности простых арифметических операций; 3) составлялась программа, которая определяла строгий порядок выполнения действий в установленной последовательности. (ЭВМ осуществляла в принципе тот же порядок действий, что и человек, работающий на арифмометре, но в тысячи или десятки тысяч раз быстрее.) Команды составленной программы записывались с помощью специального кода. Каждая из этих команд определяла какое‑либо определенное действие со стороны машины.

Любая команда, кроме кода проводимой операции, содержала в себе адреса. Обычно их было три — номера ячеек памяти, откуда брались два исходных числа (1‑й и 2‑й адрес), а затем номер ячейки, куда отправлялся полученный результат (3‑й адрес). Таким образом, к примеру, команда +/17/25/32 указывала, что следует сложить числа, находящиеся в 17‑й и 25‑й ячейках и результат направить в 32‑ю ячейку. Могла использоваться и одноадресная команда. В этом случае для выполнения арифметической операции над двумя числами и отсылки полученного результата требовалось три команды: первая команда вызывала одно из чисел из памяти в арифметическое устройство, следующая команда вызывала второе число и проводила заданную операцию над числами, третья команда отправляла полученный результат в память. Так осуществлялась работа вычислительной машины на программном уровне.

Вычислительные процессы при этом протекали следующим образом. Управление работой ЭВМ осуществлялось с помощью электронных ключей и переключателей, называемых логическими схемами, причем каждый электронный ключ при получении сигнала управляющего импульса напряжения включал нужную линию или цепь электрического тока. Простейшим электронным ключом могла служить уже трехэлектродная электронная лампа, которая заперта, когда на ее сетку подается большое отрицательное напряжение, и открывается, если на сетку подается положительное напряжение. Ее работу при этом можно представить как управляющий вентиль, который пропускает через себя импульс A, когда на второй его вход подан управляющий импульс B. Когда же имеется только один импульс тока A или B, то вентиль закрыт и импульс не проходит на его выход. Таким образом, только при совпадении по времени обоих импульсов A и B на выходе появится импульс. Такую схему называют схемой совпадений, или логической схемой "и". Наряду с ней в вычислительной машине используется целый набор других логических схем. Например, схема «или», которая дает на выходе импульс при появлении его на линии A или B или одновременно на обеих линиях. Другая логическая схема — схема «нет». Она, наоборот, запрещает прохождение импульса через вентиль, если одновременно подан другой запрещающий импульс, запирающий лампу.

С использованием двух этих схем можно собрать одноразрядный сумматор. Предположим, что импульсы A и B одновременно передаются на схемы «нет» и "и", причем со схемой «нет» связана шина (провод) «сумма», а со схемой "и" шина «перенос». Предположим, что на вход A поступает импульс (то есть единица), а на вход B не поступает. Тогда «нет» пропустит импульс на шину «сумма», а схема "и" не пропустит его, то есть в разряде будет значиться "1", что и соответствует правилу двоичного сложения. Предположим, что на входы A и B одновременно поступают импульсы. Это означает, что код числа A есть "1" и код B тоже "1". Схема «нет» не пропустит двух сигналов и на выходе «сумма» будет "0" Зато схема "и" пропустит их, и на шине «перенос» будет импульс, то есть "1" передастся в сумматор соседнего разряда.

В первых ЭВМ основным элементом памяти и арифметического суммирующего устройства служили триггеры. Триггерная схема, как мы помним, обладала двумя устойчивыми состояниями равновесия. Приписывая одному состоянию значение кода "0", а другому значение кода "1", можно было использовать триггерные ячейки для временного хранения кодов. В суммирующих схемах при подаче импульса на счетный вход триггера он переходил из одного состояния равновесия в другое, что полностью соответствовало правилам сложения для одного двоичного разряда (0+0=0; 0+1=1; 1+0=1; 1+1=0 и перенос единицы в старший разряд). При этом первоначальное положение триггера рассматривалось как код первого числа, а подаваемый импульс — как код второго числа. Результат образовывался на триггерной ячейке. Для того чтобы осуществить суммирующую схему для нескольких двоичных разрядов, необходимо было обеспечить перенос единицы из одного разряда в другой, что и осуществлялось специальной схемой.

Сумматор был главной частью арифметического устройства машины. Сумматор параллельного сложения кодов чисел сразу по всем разрядам имел столько одноразрядных сумматоров, сколько двоичных разрядов содержал код числа. Складываемые числа A и B поступали в сумматор из запоминающих устройств и сохранялись там с помощью триггеров. Регистры также состояли из ряда соединенных между собой триггеров T1, T2, T3, Т'1, Т'2 и т.д., в которые код числа подавался из записывающего устройства параллельно для всех разрядов. Каждый триггер хранил код одного разряда, так что для хранения числа, имеющего n двоичных разрядов, требовалось n электронных реле. Коды чисел, хранящиеся в регистрах, складывались одновременно по каждому разряду с помощью сумматоров S1, S2, S3 и т.д., число которых было равно числу разрядов. Каждый одноразрядный сумматор имел три входа. На первый и второй входы подавались коды чисел A и B одного разряда. Третий вход служил для передачи кода переноса из предыдущего разряда.

В результате сложения кодов данного разряда на выходной шине сумматора получался код суммы, а на шине «перенос» код "1" или "0" для переноса в следующий разряд. Пусть, например, требовалось сложить два числа A=5 (в двоичном коде 0101) и B=3 (в двоичном коде 0011). При параллельном сложении этих чисел на входы A1, A2 и A3 сумматора соответственно подавались коды A1=1, A2=0, A3=1, A4=0 и B1=1, B2=1, B3=0, B4=0. В результате суммирования кодов первого разряда в сумматоре S1 получим 1+1=0 и код переноса "1" в следующий разряд. Сумматор S2 суммировал три кода: коды A2, B2 и код переноса из предыдущего сумматора S1. В результате получим 0+1+1=0 и код "1" переноса в следующий третий разряд.

Сумматор S3 складывает коды третьего разряда чисел A и B и код переноса "1" из второго разряда, то есть будем иметь 1+0+1=0 и снова перенос в следующий четвертый разряд. В итоге сложения на шинах «сумма» получим код 1000, что соответствует числу 8.

В 1951 году Джой Форрестер внес важное усовершенствование в устройство ЭВМ, запатентовав память на магнитных сердечниках, которые могли запоминать и хранить сколь угодно долго поданные на них импульсы.

Сердечники изготовляли из феррита, который получался смешением окиси железа с другими примесями. На сердечнике имелось три обмотки. Обмотки 1 и 2 служили для намагничивания сердечника в том или ином направлении с помощью подачи на них импульсов различной полярности. Обмотка 3 являлась обмоткой выхода ячейки, в которой индуцировался ток при перемагничивании сердечника. В каждом сердечнике путем его намагничивания хранилась запись одного импульса, соответствующая одному разряду какого‑нибудь числа. Из сердечников, соединенных в определенном порядке, всегда можно было с большой скоростью выбрать нужное число. Так, если через обмотку сердечника подавали положительный сигнал, то сердечник намагничивается положительно, при отрицательном сигнале намагничивание было отрицательным. Таким образом, состояние сердечника характеризовалось записанным сигналом. При считывании через обмотку подавался сигнал определенной полярности, например положительный. Если перед этим сердечник был намагничен отрицательно, то происходило его перемагничивание — и в выходной обмотке (по закону электромагнитной индукции) возникал электрический ток, который усиливался усилителем. Если же сердечник был намагничен положительно, то изменения его состояния не происходило — и в выходной обмотке электрический сигнал не возникал. После выборки кода необходимо было восстановить первоначальное состояние сердечника, что и осуществлялось специальной схемой. Этот вид запоминающего устройства позволял производить выборку чисел за несколько микросекунд.

Большие объемы информации хранились на внешнем носителе, например на магнитной ленте. Запись электрических импульсов здесь была аналогична записи звука на магнитофон: через магнитные головки пропускали импульсы тока, которые намагничивали соответствующие места проходившей ленты. При считывании поле остаточного намагничивания, проходя под головками, наводило в них электрические сигналы, которые усиливались и поступали в машину. Точно так же информация записывалась на магнитный барабан, покрытый ферромагнитным материалом. В этом случае информацию можно было найти быстрее.

ТРАНЗИСТОР

Изобретение в конце 40‑х годов XX века транзистора стало одной из крупнейших вех в истории электроники. Электронные лампы, которые до этого в течение долгого времени были непременным и главнейшим элементом всех радио — и электронных устройств, имели много недостатков. По мере усложнения радиоаппаратуры и повышения общих требований к ней, эти недостатки ощущались все острее. К ним нужно отнести прежде всего механическую непрочность ламп, малый срок их службы, большие габариты, невысокий КПД из‑за больших тепловых потерь на аноде. Поэтому, когда на смену вакуумным лампам во второй половине XX века пришли полупроводниковые элементы, не обладавшие ни одним из перечисленных изъянов, в радиотехнике и электронике произошел настоящий переворот.

Надо сказать, что полупроводники далеко не сразу открыли перед человеком свои замечательные свойства. Долгое время в электротехнике использовались исключительно проводники и диэлектрики. Большая группа материалов, занимавших промежуточное положение между ними, не находила никакого применения, и лишь отдельные исследователи, изучая природу электричества, время от времени проявляли интерес к их электрическим свойствам. Так, в 1874 году Браун обнаружил явление выпрямления тока в месте контакта свинца и пирита и создал первый кристаллический детектор. Другими исследователями было установлено, что существенное влияние на проводимость полупроводников оказывают содержащиеся в них примеси. Например, Беддекер в 1907 году обнаружил, что проводимость йодистой меди возрастает в 24 раза при наличии примеси йода, который сам по себе не является проводником.

Чем же объясняются свойства полупроводников и почему они приобрели столь важное значение в электронике? Возьмем такой типичный полупроводник, как германий. В обычных условиях он имеет удельное сопротивление в 30 миллионов раз больше, чем у меди, и в 1000000 миллионов раз меньше, чем у стекла. Следовательно, по своим свойства он все же несколько ближе к проводникам, чем к диэлектрикам. Как известно, способность того или иного вещества проводить или не проводить электрический ток зависит от наличия или отсутствия в нем свободных заряженных частиц.

Германий в этом смысле не является исключением. Каждый его атом четырехвалентен и должен образовывать с соседними атомами четыре электронных связи. Но благодаря тепловому воздействию некоторая часть электронов покидает свои атомы и начинает свободно перемещаться между узлами кристаллической решетки. Это примерно 2 электрона на каждые 10 миллиардов атомов. В одном грамме германия содержится около 10 тысяч миллиардов атомов, то есть в нем имеется около 2 тысяч миллиардов свободных электронов. Это в миллионы раз меньше, чем, например, в меди или серебре, но все же достаточно для того, чтобы германий мог пропускать через себя небольшой ток. Однако, как уже говорилось, проводимость германия можно значительно повысить, если ввести в состав его решетки примеси, например, пятивалентный атом мышьяка или сурьмы. Тогда четыре электрона мышьяка образуют валентные связи с атомами германия, но пятый останется свободен. Он будет слабо связан с атомом, так что небольшого напряжения, приложенного к кристаллу, будет достаточно для того, чтобы он оторвался и превратился в свободный электрон (понятно, что атомы мышьяка при этом становятся положительно заряженными ионами). Все это заметно меняет электрические свойства германия. Хотя содержание примеси в нем невелико — всего 1 атом на 10 миллионов атомов германия, благодаря ее присутствию количество свободных отрицательно заряженных частиц (электронов) в кристалле германия многократно возрастает. Такой полупроводник принято называть полупроводником n‑типа (от negative — отрицательный).

Другая картина будет в том случае, когда в кристалл германия вводится трехвалентная примесь (например, алюминий, галлий или индий). Каждый атом примеси образует связи только с тремя атомами германия, а на месте четвертой связи останется свободное место — дырка, которую легко может заполнить любой электрон (при этом атом примеси ионизируется отрицательно). Если этот электрон перейдет к примеси от соседнего атома германия, то дырка будет в свою очередь у последнего. Приложив к такому кристаллу напряжение, получим эффект, который можно назвать «перемещением дырок». Действительно, пусть с той стороны, где находится отрицательный полюс внешнего источника, электрон заполнит дырку трехвалентного атома. Следовательно, электрон приблизится к положительному полюсу, тогда как новая дырка образуется в соседнем атоме, расположенном ближе к отрицательному полюсу. Затем происходит это же явление с другим атомом. Новая дырка в свою очередь заполнится электроном, приближающимся таким образом к положительному полюсу, а образовавшаяся за этот счет дырка приблизится к отрицательному полюсу. И когда в итоге такого движения электрон достигнет положительного полюса, откуда он направится в источник тока, дырка достигнет отрицательного полюса, где она заполнится электроном, поступающим из источника тока. Дырка перемещается так, словно это частица с положительным зарядом, и можно говорить, что здесь электрический ток создается положительными зарядами. Такой полупроводник называют полупроводником p‑типа (от positiv — положительный).

Само по себе явление примесной проводимости еще не имеет большого значения, но при соединении двух полупроводников — одного с n‑проводимостью, а другого с p‑проводимостью (например, когда в кристалле германия с одной стороны создана n‑проводимость, а с другой — p‑проводимость) — происходят очень любопытные явления. Отрицательно ионизированные атомы области p оттолкнут от перехода свободные электроны области n, а положительно ионизированные атомы области n оттолкнут от перехода дырки области p. То есть p‑n переход превратится в своего рода барьер между двумя областями. Благодаря этому кристалл приобретет ярко выраженную одностороннюю проводимость: для одних токов он будет вести себя как проводник, а для других — как изолятор.

В самом деле, если приложить к кристаллу напряжение большее по величине, чем «запорное» напряжение p‑n перехода, причем таким образом, что положительный электрод будет соединен с p‑областью, а отрицательный — с n‑областью, то в кристалле будет протекать электрический ток, образованный электронами и дырками, перемещающимися навстречу друг другу.

Если же потенциалы внешнего источника поменять противоположным образом, ток прекратится (вернее, он будет очень незначительным) — произойдет только отток электронов и дырок от границы разделения двух областей, вследствие чего потенциальный барьер между ними увеличится.

В данном случае полупроводниковый кристалл будет вести себя точно так же, как вакуумная лампа‑диод, поэтому приборы, основанные на этом принципе, назвали полупроводниковыми диодами. Как и ламповые диоды, они могут служить детекторами, то есть выпрямителями тока.

Еще более интересное явление можно наблюдать в том случае, когда в полупроводниковом кристалле образован не один, а два p‑n перехода. Такой полупроводниковый элемент получил название транзистора. Одну из его внешних областей именуют эмиттером, другую — коллектором, а среднюю область (которую обычно делают очень тонкой) — базой.

Если приложить напряжение к эмиттеру и коллектору транзистора, ток не будет проходить, как бы мы не меняли полярность. Но если создать небольшую разность потенциалов между эмиттером и базой, то свободные электроны из эмиттера, преодолев p‑n переход, попадут в базу. А так как база очень тонкая, то лишь небольшого количества этих электронов хватит для заполнения дырок, находящихся в области p. Поэтому большая часть их пройдет в коллектор, преодолев запирающий барьер второго перехода — в транзисторе возникнет электрический ток. Это явление тем более замечательно, что ток в цепи эмиттер‑база обычно в десятки раз меньше того, который протекает в цепи эмиттер‑коллектор Из этого видно, что по своему действию транзистор можно в известном смысле считать аналогом трехэлектродной лампы (хотя физические процессы в них совершенно различны), причем база играет здесь роль сетки, помещающейся между анодом и катодом. Точно так же, как в лампе, небольшое изменение потенциала сетки вызывает значительное изменение анодного тока, в транзисторе слабые изменения в цепи базы вызывают значительные изменения тока коллектора. Следовательно, транзистор может использоваться в качестве усилителя и генератора электрических сигналов.

Полупроводниковые элементы начали постепенно вытеснять электронные лампы с начала 40‑х годов. С 1940 года широкое применение в радиолокационных устройствах получил точечный германиевый диод. Радиолокация вообще послужила стимулом для быстрого развития электроники мощных источников высокочастотной энергии. Все больший интерес проявлялся к дециметровым и сантиметровым волнам, к созданию электронных приборов, способных работать в этих диапазонах. Между тем электронные лампы при использовании их в области высоких и сверхвысоких частот вели себя неудовлетворительно, так как собственные шумы существенно ограничивали их чувствительность. Применение на входах радиоприемников точечных германиевых диодов позволило резко снизить собственные шумы, повысить чувствительность и дальность обнаружения объектов.

Однако подлинная эра полупроводников началась уже после Второй мировой войны, когда был изобретен точечный транзистор. Его создали после многих опытов в 1948 году сотрудники американской фирмы «Белл» Шокли, Бардин и Браттейн. Расположив на германиевом кристалле, на небольшом расстоянии друг от друга, два точечных контакта и подав на один из них прямое смещение, а на другой — обратное, они получили возможность с помощью тока, проходившего через первый контакт, управлять током через второй. Этот первый транзистор имел коэффициент усиления порядка 100.

Новое изобретение быстро получило широкое распространение. Первые точечные транзисторы состояли из германиевого кристалла с n‑проводимостью, служившего базой, на которую опирались два тонких бронзовых острия, расположенные очень близко друг к другу — на расстоянии нескольких микрон. Одно из них (обычно бериллиевая бронза) служило эмиттером, а другое (из фосфорной бронзы) — коллектором. При изготовлении транзистора через острия пропускался ток силой примерно в один ампер. Германий при этом расплавлялся, так же как кончики остриев. Медь и имеющиеся в ней примеси переходили в германий и образовывали в непосредственной близости от точечных контактов слои с дырочной проводимостью.

Эти транзисторы не отличались надежностью из‑за несовершенства своей конструкции. Они были нестабильны и не могли работать при больших мощностях. Стоимость их была велика. Однако они были намного надежнее вакуумных ламп, не боялись сырости и потребляли мощности в сотни раз меньшие, чем аналогичные им электронные лампы. Вместе с тем они были чрезвычайно экономичны, так как требовали для своего питания очень маленького тока порядка 0, 5‑1 В и не нуждались в отдельной батарее. Их КПД достигал 70%, в то время как у лампы он редко превышал 10%. Поскольку транзисторы не требовали накала, они начинали работать немедленно после подачи на них напряжения. К тому же они имели очень низкий уровень собственных шумов, и поэтому аппаратура, собранная на транзисторах, оказывалась более чувствительной.

Постепенно новый прибор совершенствовался. В 1952 году появились первые плоские примесные германиевые транзисторы. Их изготовление было сложным технологическим процессом. Сначала германий очищали от примесей, а затем образовывали монокристалл. (Обычный кусок германия состоит из большого числа сращенных в беспорядке кристаллов; для полупроводниковых приборов такая структура материала не годится — здесь нужна исключительно правильная, единая для всего куска кристаллическая решетка.) Для этого германий расплавляли и опускали в него затравку — маленький кристалл с правильно ориентированной решеткой. Вращая затравку вокруг оси, ее медленно приподнимали. Вследствие этого атомы вокруг затравки выстраивались в правильную кристаллическую решетку. Полупроводниковый материал затвердевал и обволакивал затравку. В результате получался монокристаллический стержень. Одновременно в расплав добавляли примесь p или n типа. Затем монокристалл резали на маленькие пластинки, которые служили базой. Эмиттер и коллектор создавали различными способами. Наиболее простой метод состоял в том, что на обе стороны пластинки германия накладывали маленькие кусочки индия и быстро нагревали их до 600 градусов. При этой температуре индий сплавлялся с находящимся под ним германием. При остывании насыщенные индием области приобретали проводимость p‑типа. Затем кристалл помещали в корпус и присоединяли выводы.

В 1955 году фирмой «Белл систем» был создан диффузионный германиевый транзистор. Метод диффузии состоял в том, что пластинки полупроводника помещали в атмосферу газа, содержащего пары примеси, которая должна была образовать эмиттер и коллектор, и нагревали пластинки до температуры, близкой к точке плавления. Атомы примесей при этом постепенно проникали в полупроводник.

АВТОПИЛОТ

Автопилот представляет собой совокупность нескольких устройств, совместная работа которых дает возможность автоматически, без участия человека, управлять движением самолета или ракеты. Создание автопилота составило важную эпоху в истории авиации, так как сделало воздушные полеты гораздо более безопасными. Что же касается ракетной техники, где все полеты осуществляются в беспилотном режиме, то без надежных автоматических систем управления эта техника вообще не могла бы развиваться. Главная идея автоматического пилотирования заключается в том, что автопилот строго поддерживает правильную ориентацию перемещающегося в пространстве аппарата. Благодаря этому аппарат, во‑первых, удерживается в воздухе и не падает, а во‑вторых, не сбивается с заданного курса, поскольку от правильной ориентации прежде всего и зависит траектория его полета. В свою очередь, ориентация аппарата в пространстве определяется тремя углами. Во‑первых, это угол тангажа, то есть угол между продольной осью аппарата и плоскостью земли (или, как говорят, плоскостью горизонта). Отслеживание этого угла позволяет самолету сохранять продольную устойчивость — не «клевать носом», а ракете, совершающей полет по баллистической траектории, — точнее поразить цель. Во‑вторых, это угол рысканья, то есть угол между продольной осью аппарата и плоскостью полета (так мы назовем плоскость, перпендикулярную плоскости горизонта и проходящую через точку старта и точку цели). Угол рысканья указывает на отклонение аппарата от заданного курса. И, в‑третьих, это углом крена, то есть угол, который возникает при повороте корпуса аппарата вокруг его продольной оси. Своевременное исправление крена позволяет самолету сохранять поперечную устойчивость и гасит беспорядочное вращение ракеты. Автоматическое управление аппаратом было бы невозможно, если бы не существовало надежного и простого способа определения этих углов. К счастью, такой способ есть, и он основан на свойстве быстро вращающегося гироскопа сохранять неизменным в пространстве положение своей оси.

Простейшим гироскопом является детский волчок, быстро вращающийся вокруг своей оси. Попробуйте повалить его щелчком, и вы увидите, что это невозможно — волчок лишь отскочит в сторону и будет продолжать вращение.

Однако ось OA волчка не имеет постоянной ориентации, поскольку ее конец A не закреплен. Гироскопы, применяемые в технике, имеют намного более сложное устройство: ротор (собственно волчок) закрепляется здесь в рамках (кольцах) 1 и 2 так называемого карданова подвеса, что дает возможность оси AB занять любое положение в пространстве.

Такой гироскоп может совершать три независимых поворота вокруг осей AB, DE и GK, пересекающихся в центре подвеса O, который остается неподвижным относительно основания.

Главное свойство быстро вращающегося гироскопа, как уже было сказано, состоит в том, что его ось стремится устойчиво сохранять в мировом пространстве приданное ей первоначальное направление. Например, если эта ось была изначально направлена на какую‑то звезду, то при любых перемещениях самого прибора и случайных толчках она будет продолжать указывать на эту звезду даже тогда, когда ее ориентация относительно земных осей изменится. Впервые это свойство использовал в 1852 году французский физик Фуко для экспериментального доказательства вращения Земли вокруг ее оси. Отсюда и само название «гироскоп», что в переводе с греческого означает «наблюдать вращение».

Второе важное свойство гироскопа обнаруживается, когда на его ось (или рамку) начинает действовать какая‑то внешняя сила, стремящаяся повернуть ее относительно центра подвеса. Например, если сила P будет действовать на конец оси AB, то гироскоп, вместо того чтобы отклониться в сторону действия силы (как это было бы в том случае, если бы ротор не вращался), будет наклоняться в направлении, строго перпендикулярном действию силы, то есть (в нашем случае) начнет вращаться вокруг оси DE, причем с постоянной скоростью. Это вращение называется прецессией гироскопа, и оно будет тем медленнее, чем быстрее вращается вокруг оси AB сам гироскоп. Если в какой‑то момент действие внешней силы прекращается, то одновременно прекращается и прецессия, и ось AB мгновенно останавливается.

Прецессию можно наблюдать и у такого простого гироскопа, каким является детский волчок, у которого роль центра подвеса играет точка опоры. Если волчок раскрутить таким образом, что ось его будет не перпендикулярна полу, а наклонена к нему под каким‑то углом, то можно увидеть, что ось такого волчка отклоняется не в сторону действия силы тяжести (то есть вниз), а в перпендикулярном направлении, то есть ось начинает вращаться вокруг перпендикуляра к полу, опущенного в точку опоры.

На этих двух свойствах гироскопа основано несколько приборов, использующихся в автопилоте. В 70‑х годах XIX века гироскопы начали применять в военном деле в автоматах курса морских торпед. В момент пуска торпеды ротор установленного на ней гироскопа раскручивался до скорости в несколько тысяч оборотов в минуту. После этого его ось была все время направлена на цель.

К оси гироскопа прикреплялся эксцентрик — диск, центр которого был сдвинут от оси вертикального кольца автомата. Эксцентрик упирался в шток золотника: когда торпеда шла точно на цель, поршеньки золотника закрывали отверстия трубопроводов 1 и 2, и поршень рулевой машины оставался неподвижным. Если же торпеда по какой‑то причине отклонялась от курса, то эксцентрик, связанный с гироскопом, оставался неподвижен, а шток золотника под действием пружины соскальзывал влево или вправо и открывал отверстие, через которое сжатый воздух по трубопроводу 1 или 2 поступал в рулевую машину. Под действием сжатого воздуха поршень рулевой машины приходил в движение и перекладывал руль, так что торпеда возвращалась на правильный курс.

Затем гироскопы нашли широкое применение в авиации. В главе, посвященной аэроплану, уже говорилось о том, какой важной проблемой для первых авиаторов было сохранение в полете правильной ориентации самолетов. Многие конструкторы думали тогда над созданием автоматических стабилизаторов. В 1911 году американский летчик Сперри разработал первый автоматический стабилизатор с массивным гироскопом. Впервые самолет с таким стабилизатором поднялся в воздух в 1914 году. А в начале 20‑х годов фирма Сперри создала уже настоящий автопилот. Первые автопилоты управляли только рулями и следили за сохранением заданного режима полета. Дальнейшее их развитие привело к появлению систем, автоматизирующих управление как рулями, так и двигателями летательного аппарата. Подобные автопилоты уже допускали полеты без экипажа и управление летательным аппаратом на расстоянии. Они нашли применение в первых ракетах.

Раньше других с проблемой автоматического управления ракетой столкнулись немецкие конструкторы — создатели первой в истории баллистической ракеты «Фау‑2». (Подробнее об этой ракете будет говориться в следующей главе.) Автомат стабилизации «Фау‑2» состоял из гироскопических приборов «Горизонт» и «Вертикант».

Наши рекомендации