Системы связей ствола мозга
Связи различных отделов ЦНС осуществляются с помощью нервных путей, идущих в различных направлениях и выполняющих разные функции, что и положено в основу их классификации. В частности, в спинном мозге, как и в других отделах ЦНС, выделяют восходящие и нисходящие пути(определяющим фактором этой классификации является направление потока импульсов).
Кроме того, в стволе мозга восходящие системы подразделяют на специфические и неспецифические.
Восходящие и нисходящие пути спинного мозга рассмотрены в разделе 5.2.2.
Проводниковая функция ствола мозгавыполняется нисходящими и восходящими путями, часть из которых переключается в стволовых центрах, другая часть идет транзиторно (без переключения).
А. Восходящие путиявляются частью проводникового отдела анализаторов, передающих информацию от рецепторов в проекционные зоны коры. В стволе мозга выделяют две восходящие системы: специфическую и неспецифическую.
1. Специфическую восходящую систему составляет лемнискота-ламический путь, в котором выделяют медиальную и латеральную петли. Медиальная петля образуется преимущественно из аксонов нейронов тонкого ядра (Голля) и клиновидного ядра (Бурдаха), которые проводят импульсы от проприорецепторов. Волокна медиальной петли переключаются в вентральных задних специфических ядрах таламуса. Медиальная петля входит в проводниковый отдел слухового анализатора, ее волокна переключаются в медиальном коленчатом теле таламуса и нижних буграх четверохолмия. К специфической проводящей системе относятся проводящие пути зрительного и вестибулярного анализаторов. Импульсыпо специфическим восходящим путям поступают в корковый конец соответствующего анализатора (зрительного, слухового и т.д.).
2. Неспецифические (экстралелтисковые) восходящие пути переключаются в неспецифических (интраламинарных и ретикулярном) ядрах таламуса. В основном это волокна латерального спиноталамического и спиноретикулярного трактов, проводящих температурную и болевую чувствительность. Импульсация от них проецируется в различные области коры (особенно лобную орбитальную кору). Неспецифическая система получает коллатеральные волокна от специфической системы, что обеспечивает связь этих двух восходящих систем. Функциональной особенностью неспецифической системы является относительно медленное проведение возбуждения. Рецептивные поля нейронов большие, нейроны гюлимодаль-ные, связанные с несколькими видами чувствительности, топография проекции периферии в центрах не выражена.
3. Часть афферентной импульсации поступает в мозжечок по другим системам. Через ствол мозга в мозжечок проходят задний спинно-мозжечковый тракт Флексига и передний спинно-мозжечковый тракт Говерса, проводящие импульсацию от рецепторов мышц и связок, а также вестибуломозжечковый тракт, несущий информацию от вестибулярных рецепторов. Из коры мозжечка информация передается в вентральные ядра таламуса, далее она проецируется в соматосенсорную, моторную и премоторные зоны коры большого мозга.Б. Нисходящие проводниковые пути ствола мозгавключают двигательные пирамидные пути,начинающиеся от клеток Беца коры прецентральной извилины. Они иннервируют мотонейроны передних рогов спинного мозга (кортикоспинальные пути), мотонейроны двигательных ядер черепных нервов (кортикобульбарный путь), обеспечивая произвольные сокращения мышц конечностей, туловища, шеи и головы. Моторные центры ствола мозга и их пути - важнейший компонент экстрапирамидной системы,основной функцией которой является регуляция мышечного тонуса, позы и равновесия. К этой системе на уровне ствола мозга относятся кортикорубральный и кортикоретику-лярный тракты, оканчивающиеся на моторных центрах ствола, от которых идут рубро-, ретикуло- и вестибулоспинальный пути. Экстрапирамидная система представляет собой совокупность ядер ствола мозга внепирамидной системы. Ее основными элементами являются: полосатое тело, бледный шар, красное ядро, ретикулярная формация.
В стволе мозга проходят нисходящие пути, обеспечивающие двигательные функции мозжечка; к ним относится кортико-мостомозжечковый путь, по которому в мозжечок поступает импульсация от двигательной и других областей коры. Обработанная в коре мозжечка и его ядрах информация поступает на моторные ядра ствола (красное, вестибулярные, ретикулярные). Через ствол мозга проходит начинающийся в четверохолмии тектоспинальный тракт, который обеспечивает двигательные реакции организма в ориентировочных зрительных и слуховых рефлексах. Все двигательные реакции организма осуществляются нисходящими системами с помощью а- и у-мотонейронов спинного мозга и нейронов двигательных ядер черепных нервов.
МОЗЖЕЧОК
Мозжечокрасположен позади полушарий большого мозга, над продолговатым мозгом и мостом. В совокупности с последним он образует задний мозг. Мозжечок включает в себя более половины всех нейронов ЦНС, хотя составляет 10% массы головного мозга. Это свидетельствует о больших возможностях обработки информации мозжечком. Он играет важную роль в интеграции двигательных и вегетативных реакций, в частности в координации произвольных и непроизвольных движений, поддержании равновесия, регуляции мышечного тонуса.
А. Функциональная организация.Выделяют три структуры мозжечка, отражающие эволюцию его функций:
• древний мозжечок (архицеребеллум) состоит из клочка и узелка (флоккулонодулярная доля) и нижней части червя; имеет наиболее выраженные связи с вестибулярной системой, поэтому его называют также вестибулярным мозжечком;
• старый мозжечок (палеоцеребеллум) включает верхнюю часть червя, парафлоккулярный отдел, пирамиды и язычок; получает информацию преимущественно от проприорецепторов. Его называют также спинальным мозжечком;
• новый мозжечок (неоцеребеллум) состоит из двух полушарий. Он получает информацию от коры, преимущественно по лобно-мостомозжечковому пути, от зрительных и слуховых ре-цептирующих систем, что свидетельствует об его участии в анализе зрительных, слуховых сигналов и организации на них реакции.
1. Межнейронные связи в коре полушарий мозжечка,его афферентные входы и эфферентные выходы весьма разнообразны. Грушевидные нейроны (клетки Пуркинье) образуют средний -II (ганглиозный) слой коры, являющейся главной функциональной единицей мозжечка. Структурной основой служат многочисленные ветвящиеся дендриты, на которых в одной клетке может быть до 100000 синапсов.
Клетки Пуркинье являются единственными эфферентными нейронами коры мозжечка и обеспечивают его связь с корой большого мозга, стволовыми образованиями и спинным мозгом. Эти клетки непосредственно связывают его кору с внутримозжечковыми и вестибулярными ядрами. В связи с этим функциональное влияние мозжечка существенным образом зависит от активности клеток Пуркинье.
Информация к клеткам Пуркинье (афферентные входы) поступает практически от всех рецепторов: мышечных, вестибулярных, кожных, зрительных, слуховых; от нейронов основания задних рогов спинного мозга (по спинно-оливному пути), а также от двигательной коры головного мозга, ассоциативной коры и ретикулярной формации.
На мозжечок передается влияние некоторых структур ствола головного мозга, например голубого пятна и ядер шва.
Преобладающее как прямое, так и опосредованное афферентное влияние на клетки Пуркинье является возбуждающим. Но поскольку клетки Пуркинье являются тормозными нейронами (медиатор ГАМК), то с их помощью кора мозжечка превращает возбуждающие сигналы на входе в тормозные сигналы на выходе. Таким образом, эфферентное влияние коры мозжечка на последующее нейронное звено (в основном это внутримозжечковые ядра) является тормозным. Под IIслоем коры (под клетками Пуркинье) лежит гранулярный (III) слой, состоящий из клеток-зерен, число которых достигает 10 млрд. Аксоны этих клеток поднимаются вверх, Т-образно делятся на поверхности коры, образуя дорожки контактов с клетками Пуркинье. Здесь же лежат клетки Гольджи.
Верхний (I) слой коры мозжечка - молекулярный, состоит из параллельных волокон, разветвлений дендритов и аксонов II и III слоев. В нижней части молекулярного слоя встречаются корзинчатые и звездчатые клетки, которые обеспечивают взаимодействие клеток Пуркинье.
Стимуляция верхнего слоя коры мозжечка приводит к длительному (до 200 мс) торможению активности клеток Пуркинье. Такое же их торможение возникает при световых и звуковых сигналах. Суммарные изменения электрической активности коры мозжечка на раздражение чувствительного нерва любой мышцы вызывают торможение активности коры (гиперполяризация клеток Пуркинье), которое наступает через 15-20 мс и длится 20-30 мс, после чего возникает волна возбуждения, длящаяся до 500 мс (деполяризация клеток Пуркинье).
Фоновая импульсная активность нейронов регистрируется в слое клеток Пуркинье и гранулярном слое, причем частота генерации импульсов этих клеток колеблется от 20 до 200 в секунду.
2. Подкорковая система мозжечкавключает три функционально разных ядерных образования: ядро шатра, пробковидное, шаровидное и зубчатое ядра.
Ядро шатра получает информацию от медиальной зоны коры мозжечка и связано с ядром Дейтерса и ретикулярной формацией продолговатого и среднего мозга. Отсюда сигналы идут по ретикулоспинальному пути к мотонейронам спинного мозга.
На пробковидное и шаровидное ядра проецируется промежуточная кора мозжечка. От них связи идут в средний мозг к красному ядру, далее в спинной мозг по руброспинальному пути.
Зубчатое ядро получает информацию от латеральной зоны коры мозжечка, оно связано с таламусом, а через него - с моторной зоной коры большого мозга.
Клетки ядер мозжечка значительно реже генерируют импульсы (1-3 в секунду), чем клетки коры мозжечка (клетки Пуркинье -20-200 импульсов в секунду).
3. С соседними отделами мозга мозжечок соединяется тремя парами ножек.Нижние мозжечковые ножки соединяют мозжечок с продолговатым мозгом, средние - с мостом, верхние - со средним мозгом. По проводящим путям ножек мозжечок получает афферентную импульсацию (входы) от других отделов мозга и посылает эфферентные импульсы (выходы) к различным структурам мозга.
Через верхние ножки сигналы идут в таламус, мост, красное ядро, ядра ствола мозга, в ретикулярную формацию среднего мозга. Средние ножки мозжечка связывают новый мозжечок с лобной долей мозга. Через нижние ножки мозжечка сигналы идут в продолговатый мозг, к его вестибулярным ядрам, оливам, ретикулярной формации.
Афферентная импульсация в кору мозжечка от кожных рецепторов, мышц, суставных оболочек, надкостницы поступает по так называемым спинно-мозжечковым трактам: заднему (дорсальному) и переднему (вентральному). Эти пути к мозжечку проходят через нижнюю оливу продолговатого мозга. От клеток олив идут так называемые лазающие волокна, которые ветвятся на дендритах клеток Пуркинье.
Ядра моста посылают афферентные пути в мозжечок, образующие мшистые волокна, которые оканчиваются на клетках-зернах III слоя коры мозжечка. Между мозжечком и голубым пятном среднего мозга существует афферентная связь с помощью адренергических волокон. Эти волокна способны диффузно выбрасывать норадреналин в межклеточное пространство коры мозжечка, тем самым гуморально изменяют состояние возбудимости его клеток.
Рассмотренная структурно-функциональная организация нейронов мозжечка позволяет понять соматические и вегетативные его функции.
Б, Двигательные функции мозжечкасостоят в регуляции мышечного тонуса, позы и равновесия, координации выполняемого целенаправленного движения, программировании целенаправленных движений.
1. Мышечный тонус и поза регулируются преимущественно древним мозжечком (флоккулонодулярная доля) и частично старым мозжечком, входящими в медиальную червячную зону. Получая и обрабатывая импульсацию от вестибулярных рецепторов, от приорецепторов аппарата движения и рецепторов кожи, от зрительных и слуховых рецепторов, мозжечок способен оценить состояние мышц, положение тела в пространстве и через ядра шатра, используя вестибуло-, ретикуло- и руброспинальный тракты, произвести перераспределение мышечного тонуса, изменить позу тела и сохранить равновесие. Нарушение равновесия является наиболее характерным симтомом поражения ар-хицеребеллума.
2. Координация выполняемого движения осуществляется старым и новым мозжечком, входящим в промежуточную (околочервячную) зону. В кору этой части мозжечка поступает импульсация от проприорецепторов, а также импульсация от мо-торной коры большого мозга, представляющая собой программу произвольного движения. Анализируя информацию о программе и выполнении движения (от проприорецепторов), мозжечок способен через свое промежуточное ядро, имеющее выходы на красное ядро и моторную кору, осуществить координацию позы и выполняемого целенаправленного движения в пространстве, а также исправить направление движения. Например, подходя к двери, мы поднимаем руку, чтобы нажать кнопку звонка. Вначале наше движение носит ориентировочный характер; мы так же поднимали бы руку, чтобы поправить прическу, надеть очки. Однако на каком-то этапе это движение становится только движением к кнопке, и, чтобы палец попал именно на кнопку, нужна определенная согласованность действий мышц-антагонистов, причем тем большая, чем ближе цель движения. Внешне движение к цели идет по прямой, без резких изгибов траектории, но эта внешняя «гладкость» движения требует постоянного перераспределения «внимания» центральных регуляторных аппаратов с одной группы мышц на другую. Нарушение координации движения является наиболее характерным симптомом нарушения функции промежуточной зоны мозжечка.
3. Мозжечок участвует в программировании движений, что осуществляется его полушариями. Кора мозжечка получает импульса-цию преимущественно из ассоциативных зон коры большого мозга через ядра моста. Эта информация характеризует замысел движения. В коре нового мозжечка она перерабатывается в программу движения, которая в виде импульсов вновь поступает через таламус в премоторную и моторную ко'ру и из нее через пирамидную и экстрапирамидную системы — к мышцам. Контроль и коррекция более медленных программированных движений осуществляются мозжечком на основе обратной афферентации преимущественно от проприорецепторов, а также от вестибулярных, зрительных, тактильных рецепторов. Коррекция быстрых движений из-за малого времени их выполнения осуществляется путем изменения их программы в самом мозжечке, т.е. на основе обучения и предшествующего опыта. К таким движениям относятся многие спортивные упражнения, печатание на пишущей машинке, игра на музыкальных инструментах.
В. Двигательные функции мозжечка играют важную роль в регуляции мышечного тонуса,сохранении позы, координации выполняемых движений, в программировании планируемых движений. Если мозжечок не выполняет своей регуляторной функции, то у человека наблюдаются расстройства двигательных функций.Эти расстройства проявляются различными симптомами, которые связаны друг с другом.
1. Дистопия (distonia - нарушение тонуса) - повышение или понижение тонуса мышц. При повреждении мозжечка наблюдается повышение тонуса мышц-разгибателей. Характер влияния на тонус мышц определяется частотой генерации импульсов нейронов ядра шатра. При высокой частоте (30-300 имп/с) тонус мышц-разгибателей снижается, при низкой (2-10 имп/с) - увеличивается. В случае повреждения мозжечка активируются нейроны вестибулярных ядер и ретикулярной формации продолговатого мозга, которые активируют мотонейроны спинного мозга. Одновременно активность пирамидных нейронов снижается, а, следовательно, снижается их тормозное влияние на те же мотонейроны спинного мозга. В итоге, получая возбуждающие сигналы от продолговатого мозга при одновременном уменьшении тормозных влияний от коры большого мозга, мотонейроны спинного мозга активируются и вызывают гипертонус мышц-разгибателей.
2. Астения (astenia - слабость) - снижение силы мышечного сокращения, быстрая утомляемость мышц.
3. Астазия (astasia, от греч. а - не, stania - стояние) — утрата способности к длительному сокращению мышц, что затрудняет стояние, сидение.
4. Тремор (tremor - дрожание) - дрожание пальцев рук, кистей, головы в покое; этот тремор усиливается при движении.
5.Дисметрия (dismetria - нарушение меры) - расстройство равномерности движений, выражающееся либо в излишнем, либо в недостаточном движении. Больной пытается взять предмет со стола и проносит руку мнмо предмета (гиперметрия) или не доносит ее до предмета (гипометрия).
6. Атаксия (ataksia, от греч. а - не, 1taksia - порядок) - нарушение координации движений. Здесь ярче всего проявляется невозможность выполнения движений в нужном порядке, в определенной последовательности. Проявлениями атаксии являются также адиадохокинез, асинергия, пьяная - шаткая походка. При адиадохокинезе человек не способен быстро вращать ладони вниз-вверх. При асинергии мышц он не способен сесть из положения, лежа без помощи рук. Пьяная походка характеризуется тем, что человек ходит, широко расставив ноги, шатаясь из стороны в сторону.
7. Дизартрия (disartria- расстройство организации речевой моторики). При повреждении мозжечка речь больного становится растянутой, слова иногда произносятся как бы толчками (скандированная речь).
Данные о том, что повреждение мозжечка ведет к расстройствам движений, которые были приобретены человеком в результате обучения, позволяют сделать вывод, что само обучение идет с участием мозжечковых структур, а следовательно, мозжечокпринимает участие в организации процессов высшей нервной деятельности. При повреждении мозжечка страдают когнитивные процессы.
После операции частичного удаления мозжечка возникают симптомы его повреждения, которые затем исчезают. Если на фоне исчезновения мозжечковых симптомов нарушается функция лобных долей мозга, то мозжечковые симптомы возникают вновь. Следовательно, кора лобных долей большого мозга компенсирует расстройства, вызываемые повреждением мозжечка. Механизм данной компенсации реализуется через лобно-мосто-мозжечковый тракт.
Г. Мозжечок за счет своего влияния на сенсомоторную область коры может изменять уровень тактильной, температурной, зрительной чувствительности.
Удаление мозжечка приводит к ослаблению силы процессов возбуждения и торможения, нарушению баланса между ними, развитию инертности. Выработка двигательных условных рефлексов после удаления мозжечка затрудняется, особенно при формировании локальной, изолированной двигательной реакции. Точно так же замедляется выработка пищевых условных рефлексов, увеличивается скрытый (латентный) период их вызова.
5.7. ПРОМЕЖУТОЧНЫЙ МОЗГ
Промежуточный мозг расположен между средним и конечным мозгом, вокруг III желудочка мозга. Он состоит из таламической области и гипоталамуса. Таламическая область включает в себя таламус, метаталамус (коленчатые тела) и эпиталамус (эпифиз). В литературе, посвященной вопросам физиологии, метаталамус объединяется с таламусом, эпифиз рассматривается в эндокринной системе.
Таламус- парный ядерный комплекс, занимающий преимущественно дорсальную часть промежуточного мозга. В таламусе выделяют до 40 парных ядер, которые в функциональном плане можно разделить на следующие три группы: релейные, ассоциативные и неспецифические. Все ядра таламуса в разной степени обладают тремя общими функциями: переключающей, интегративной и модулирующей.
А. Переключательные ядра таламуса(релейные, специфические) делят на сенсорные и несенсорные.
1. Главной функцией сенсорных ядер является переключение потоков афферентной импульсации в сенсорные зоны коры большого мозга. Наряду с этим происходят перекодирование и обработка информации. Главные сенсорные ядра следующие.
Вентральные задние ядра являются главным реле для переключения соматосенсорной афферентной системы. В них переключаются тактильная, проприоцептивная, вкусовая, висцеральная, частично температурная и болевая чувствительность. В этих ядрах имеется топографическая проекция периферии, поэтому электростимуляция вентральных задних ядер вызывает парастезии (ложные ощущения) в разных частях тела, иногда нарушение «схемы тела» (искаженное восприятие частей тела).
Латеральное коленчатое тело выполняет функции реле для переключения зрительной импульсации в затылочную кору, где она используется для формирования зрительных ощущений. Кроме корковой проекции часть зрительной импульсации направляется в верхние холмики четверохолмия. Эта информация используется для регуляции движения глаз, в зрительном ориентировочном рефлексе.
Медиальное коленчатое тело является реле для переключения слуховой импульсации в височную кору задней части сильвие-вой борозды (извилина Гешля, или поперечная височная извилина).
2. К несенсорным переключательным ядрам таламуса относятся передние и вентральные ядра. Они переключают в кору несенсорную импульсацию, поступающую в таламус из разных отделов головного мозга. В передние вентральное, медиальное и дорсальное ядра импульсация поступает из гипоталамуса. Передние ядра таламуса рассматриваются как часть лимбической системы и иногда обозначаются как «лимбические ядра таламуса».
Вентральные ядра участвуют в регуляции движения, выполняя таким образом моторную функцию. В них переключается нмпуль-сация от базальных ганглиев, зубчатого ядра мозжечка, красного ядра среднего мозга, которая после этого проецируется в моторную и премоторную кору.
Наряду с корковыми проекциями переключательных ядер каждое из них получает нисходящие корковые волокна из той же проекционной зоны, что создает структурную основу для взаиморегулирующих отношений между таламусом и корой
Б. Ассоциативные ядра таламусавключают ядра подушки, медиодорсальное ядро и латеральные ядра. Волокна к этим ядрам приходят не от проводниковых путей анализаторов, а от других ядер таламуса. Эфферентные выходы от этих ядер направляются главным образом в ассоциативные поля коры. В свою очередь кора мозга посылает волокна к ассоциативным ядрам, регулируя их функцию. Главной функцией этих ядер является интегративная функция, которая выражается в объединениидеятельности как таламических ядер, так и различных зон ассоциативной коры полушарий мозга.
Подушка получает главные входы от коленчатых тел и неспецифических ядер таламуса. Эфферентные пути от нее идут в ви-сочно-теменно-затылочные зоны коры, участвующие в гностических (узнавание предметов, явлений), речевых и зрительных функциях (например, в интеграции слова со зрительным образом), а также в восприятии «схемы тела».
В латеральные ядра поступает зрительная и слуховая импульса-ция от коленчатых тел и соматосенсорная импульсация от вентрального ядра. Интегрированная сенсорная информация от этих источников далее проецируется в ассоциативную теменную кору и используется в ее функции гнозиса, праксиса, формировании «схемы тела».
Медиодорсальное ядро получает импульсацию от гипоталамуса, миндалины, гиппокампа, таламических ядер, центрального серого вещества ствола. Проекция этого ядра распространяется на ассоциативную лобную и лимбическую кору. Оно участвует в формировании эмоциональной и поведенческой двигательной активности, а также, возможно, в образовании памяти.
В. Неспецифические ядра составляют эволюционно более древнюю часть таламуса, ее ядра содержат преимущественно мелкие, многоотростчатые нейроны и функционально рассматриваются как производное ретикулярной формации ствола мозга. В неспецифические ядра поступает импульсация от других ядер таламуса по трактам, проводящим преимущественно болевую и температурную чувствительность. В неспецифические ядра непосредственно или через ретикулярную формацию также поступает часть импульсации по коллатералям от всех специфических сенсорных систем. Кроме того, в неспецифические ядра приходит импульсация из моторных центров ствола (красное ядро, черное вещество), ядер мозжечка, от базальных ганглиев и гиппокампа, а также от коры мозга, особенно лобных долей. Неспецифические ядра имеют эфферентные выходы на другие таламические ядра, кору больших полушарий как непосредственно, так и через ретикулярные ядра, а также нисходящие пути к другим структурам ствола мозга, т. е. эти ядра, как и другие отделы ретикулярной формации, оказывают восходящие и нисходящие влияния.
Неспецифические ядра таламуса выступают в роли интегрирующего посредника между стволом мозга и мозжечком, с одной стороны, и новой корой, лимбической системой и базальными ганглиями - с другой, объединяя их в единый функциональный комплекс. На кору мозга неспецифический таламус оказывает преимущественно модулирующее влияние. Разрушение неспецифических ядер не вызывает грубых расстройств эмоций, восприятия, сна и бодрствования, образования условных рефлексов, а нарушает только тонкую регулировку поведения.
Гипоталамус - это вентральная часть промежуточного мозга, макроскопически он включает в себя преоптическую область и область перекреста зрительных нервов, серый бугор и воронку, сосцевидные тела. В гипоталамусе выделяют до 48 парных ядер, которые подразделяются разными авторами на 3-5 групп.
Гипоталамус - многофункциональная система, обладающая широкими регулирующими и интегрирующими влияниями. Однако важнейшие функции гипоталамуса трудно соотнести с его отдельными ядрами. Как правило, отдельно взятое ядро имеет несколько функций. В связи с этим физиология гипоталамуса рассматривается обычно в аспекте функциональной специфики его различных областей и зон. Гипоталамус является важнейшим центром интеграции вегетативных функций, регуляции эндокринной системы, теплового баланса организма, цикла «бодрствование - сон» и других биоритмов; велика его роль в организации поведения (пищевого, полового, агрессивно-оборонительного), направленного на реализацию биологических потребностей, в проявлении мотиваций и эмоций.
БАЗАЛЫ1ЫЕ ГАНГЛИИ
Назальные ганглии расположены в основании больших полушарий и включают три парных образования: бледный шар, филогенетически более позднее образование - полосатое тело и наиболее молодую часть - ограду. Бледный шар состоит из наружного и внутреннего сегментов; полосатое тело включает хвостатое и скорлупу.
А. Функциональные связи базальных ганглиев. Афферентная импульсация в базальные ганглии поступает преимущественно в полосатое тело в основном из трех источников: 1) от всех областей коры непосредственно и через таламус; 2) от черного вещества; 3) от неспецифических ядер таламуса.
Среди эфферентных связей базальных ганглиев можно отметить три выхода:
• от полосатого тела пути идут к бледному шару. От бледного шара начинается самый важный эфферентный тракт базальных ганглиев в таламус, в его релейные вентральные ядра, от них возбуждающий путь идет в двигательную кору;
• часть эфферентных волокон из бледного шара и полосатого тела следует к центрам ствола мозга (ретикулярная формация, красное ядро и далее в спинной мозг), а также через нижнюю оливу в мозжечок;
• от полосатого тела тормозящие пути идут к черному веществу и после переключения - к ядрам таламуса.
Базальные ганглии являются промежуточным звеном (станцией переключения), связывающим ассоциативную и частично сенсорную кору с двигательной корой. Рассмотрим функции отдельных структур базальных ганглиев.
Б. Функции полосатого тела. 1. Полосатое тело оказывает на бледный шар двоякое влияние - возбуждающее и тормозящее с преобладанием последнего, что осуществляется преимущественно через тонкие тормозные волокна (медиатор ГАМК).
2. Полосатое тело оказывает тормозящее влияние (медиатор ГАМК) на нейроны черного вещества которые в свою очередь оказывают модулирующее влияние (медиатор дофамин) на кортикостриарные каналы связи.
3. Влияние на кору большого мозга: раздражение полосатого тела вызывает синхронизацию ЭЭГ - появление в ней высокоамплитудных ритмов, характерных для фазы медленного сна. Разрушение полосатого тела уменьшает время сна в цикле бодрствование - сон.
4. Стимуляция полосатого тела через хронически вживленные электроды вызывает относительно простые двигательные реакции: поворот головы и туловища в сторону, противоположную раздражению, иногда сгибание конечности на противоположной стороне. Стимуляция некоторых зон полосатого тела вызывает задержку текущей поведенческой деятельности - двигательной, ориентировочной, пищедобывательной. Животное как бы «застывает» в одной позе. При этом на ЭЭГ развиваются медленные высокоамплитудные ритмы. Раздражение некоторых точек полосатого тела приводит к подавлению ощущения боли.
При поражении стриарной системы возникает гипотониче-ски-гиперкинетический синдром, что обусловлено дефицитом тормозящего влияния стриатума на нижележащие двигательные центры, вследствие чего развиваются мышечная гипотония и избыточные непроизвольные движения (гиперкинезы). Гиперкинезы - автоматические чрезмерные движения, в которых участвуют отдельные части тела, конечности. Они возникают непроизвольно, исчезают во сне и усиливаются при произвольных движениях и волнении.
Отдельные виды гиперкинезов связывают с поражением определенных структур стриарной системы. При поражении оральной части полосатого тела возникают насильственные движения в мускулатуре лица и шеи, при поражении средней части - в мускулатуре туловища и рук. Поражение каудальной части полосатого тела вызывает гиперкинезы в ногах. Конкретные симптомы поражения полосатого тела весьма разнообразны.
Атетоз - медленные червеобразные, вычурные движения в дистальных отделах конечностей (в кистях и стопах). Могут наблюдаться в мускулатуре лица: выпячивание губ, перекашивание рта, гримасничанье, прищелкивание языком. Обычно атетоз связывают с поражением крупных клеток стриарной системы. Характерным его признаком является образование преходящих контрактур (зразтиа глоЫН$), которые придают кисти и пальцам своеобразное положение. У детей нередко наблюдается двусторонний, двойной атетоз при подкорковых дегенерациях. Гемиатетоз бывает значительно реже.
Гемибаллизм - размашистые бросковые движения в конечностях, чаще всего в руках в виде взмаха «крыла птицы». Насильственные движения при гемибаллизме производятся с большой силой, их трудно прекратить. Возникновение гемибаллизма связывают с поражением подбугорного ядра (люисово тело), расположенного под зрительным бугром.
Хореические гиперкинезы - быстрые сокращения различных групп мышц лица, туловища и конечностей. Гиперкинез не ритмичен, не координирован, распространяется на большие группы мышц дистальных и проксимальных отделов. Может напоминать произвольные движения, так как в процесс вовлекаются синер-гичные мышцы. Отмечаются нахмуривание бровей, лба, высовывание языка, порывистые, беспорядочные движения конечностей. Гиперкинез может охватывать половину тела - гемихорея. Хореический гиперкинез возникает при поражении неостриатума и наблюдается при подкорковых дегенерациях, ревматическом поражении мозга, наследственной хорее Гентангтона.
В некоторых случаях хореические гиперкинезы сочетаются с атетозом (хореоатетоз). Хореоатетоз может наблюдаться у больных как постоянно, так и в виде приступов - пароксизмальный хореоатетоз. Описано несколько вариантов семейной формы пароксизмального хореоатетоза.
Миокяонии - короткие молниеносные клонические подергивания мышцы или группы мышечных волокон, чаще ритмического характера. Миоклонии могут быть как генерализованными, так и локальными. Наиболее частая их локализация - проксимальные отделы конечностей, туловище, лицо. Описана локальная мио-клония языка, мягкого нёба (велопалатинный нистагм). Миоклонии сохраняются в покое и при движении, усиливаются при волнении. В отличие от клонических судорог миоклонии обычно не вызывают движений конечностей. Миоклонический гиперкинез наблюдается при воспалительных, токсических, наследственно-дегенеративных поражениях экстрапирамидной системы, преимущественно зубчатых ядер, нижних олив, красных ядер, черного вещества, стриатума.
Тика - быстрые клонические подергивания ограниченной группы мышц, как правило, стереотипного характера, имитирующие произвольные движения, в связи с чем они нередко производят впечатление нарочитых. Чаще локализуются в мышцах лица и проявляются быстрым наморщиванием лба, поднятием бровей, миганием, высовыванием языка. Реже встречается тик шейных мышц: поворот головы в сторону, кивание вперед. У детей тик нередко развивается как проявление невроза в результате образующегося патологического условного рефлекса, как подражание лицам, страдающим гиперкинезами (функциональный гиперкинез). Тик лицевой мускулатуры может возникнуть при невралгии тройничного нерва. Наряду с локальными формами может быть генерализованный тик, характеризующийся вовлечением мышц конечностей, туловища, дыхательных мышц, мимической мускулатуры. Особое место занимает генерализованный импульсивный тик - синдром де ля Туретта, при котором наблюдаются импульсивные подпрыгивания, приседания, гримасничанье, вокальные феномены в виде похрюкивания, вскриков, выкрикивания бранных слов (копролалия). В возникновении тиков играют роль как функциональные, так и органические факторы (врожденная, конституциональная недостаточность).
Дрожание - стереотипный клонический ритмичный гиперкинез, преимущественно наблюдающийся в кистях рук, стопах; может также отмечаться дрожание туловища, головы. Дрожание -внешнее проявление нередко невидимого сокращения мышц. По-видимому, дрожание реализуется сегментарным двигательным аппаратом, но причиной его может быть поражение и сегментарных, и надсегментарных двигательных структур, прежде всего стриопаллидарной системы и мозжечка. Амплитуда дрожания и его частота, длительность отдельных фаз могут быть различными в зависимости от механизма возникновения.
Торсионная дистопия - судорожные переразгибания позвоночника в поясничном и шейном отделах. Движения туловища имеют вращательный, штопороподобный характер, сопровождаются гиперлордозом, сколиозом, вычурными позами. Для гиперкинеза характерно появление при произвольных движениях. Торсионная дистония может прекращаться при различных компенсаторных приемах, например при обхвате руками шеи, усиленном повороте плеча и т.д. Наблюдается при дегенеративных и воспалительных заболеваниях подкорковой области.
Спастическая кривошея - судорожные сокращения мускулатуры шеи. Голова повернута в сторону и наклонена к плечу; возможны ритмичные судороги (откидывание головы назад, пожимание плечами и т.д.). Спастическая кривошея нередко возникает в начальных стадиях торсионной дистонии в качестве локального ее проявления.
Писчий спазм (графоспазм) - судорожное сокращение в пальцах кисти, которое появляется во время письма.
Профессиональные судороги — спазм мышц, участвующих в определенных профессиональных движениях. Наблюдаются у скрипачей, пианистов, гитаристов, машинисток и т.д.