Аксиомы (постулаты) алгебры логики

1. Дизъюнкция двух переменных равна 1, если хотя бы одна из них равна 1 и равна 0, если обе переменные равны 0:

0+0=0;

0+1=1;

1+0=1;

1+1=1.

2. Конъюнкция двух переменных равна 0, если хотя бы одна пе­ременная равна 0 и равна 1, если обе переменные равны 1:

0∙0=0;

0∙1=0;

1∙0=0;

1∙1=1.

3.Инверсия одного значения переменной совпадает с ее другим значением:

1= 0;

0 = 1.

Элементарные булевые функции

Булевой функцией f(x1, x2, ..., xn) называется функция, которая принимает два значения 0 или 1 в зависимости от переменных х1, каждая из которых может также принимать только два значения 0 или 1.

Одной из важнейших интерпретаций теории булевых функций является теория переключательных функций. Первоначально математический аппарат теории булевых функций был применен для анализа и синтеза релейно-контактных схем с операциями последовательного и параллельного соединения контактов.

Любая булевая функция может быть представлена таблицей, в левой части которой перечислены все наборы переменных, а в правой части - значения функции. Пример такого задания для трех переменных представлен в таблице.

Представление булевой функции

x1 x2 x3 f(х123)

Для формирования столбца значений переменных удобен лексико­графический порядок, в соответствии с которым каждый последующий набор значений получается из предыдущего прибавлением 1 в двоичной системе счисления, например, 100=011+1.

Булевая функция п переменных может иметь 2n наборов. Поскольку функция принимает только два значения, общее число булевых функций и переменных равно 22n. Таким образом, функция одной переменной может иметь четыре значения: у = х; у = -x (отрицание х); у = 0 (константа 0); у = 1 (константа 1).

Из них выделим функцию "отрицание x" (обозначается -x). Эта функция представлена в таблице

Функция отрицания

x -x

Булевых функций двух переменных - 16. Те из них, которые имеют специальные названия, представлены в таблице.

Булевы функции двух переменных

x1 x2 x1 Ú x2 x1 & x2 x1 É x2 x1 ~ x2 x1 Å x2 x1 ¯ x2 x1 ½ x2
0 0
0 1
1 0
1 1

В таблице представлены следующие функции двух переменных:

x1 Ú x2– дизъюнкция;

x1 & x2– конъюнкция;

x1 É x2– импликация;

x1 ~ x2– эквивалентность;

x1 Å x2– сложение по модулю 2;

x1 ¯ x2– стрелка Пирса;

x1 ½ x2 – штрих Шеффера

Остальные функции специальных названий не имеют и могут быть выражены через перечисленные выше функции.

Формулы логики булевых функций

Формула логики булевых функций определяется индуктивно следующим образом:

1. Любая переменная, а также константы 0 и 1 есть формула.

2. Если A и B - формулы, то A, AÚB, A&B, AÉB, A~B есть формулы.

3. Ничто, кроме указанного в пунктах 1-2, не есть формула.

Пример 2.1.

Выражение (-xÚy)&((yÉz)~x) является формулой

Выражение (–x&yÉz~x) не является формулой

Часть формулы, которая сама является формулой, называется подформулой.

Пример 2.2.

x&(yÉz) – формула; yÉz – ее подформула.

Функция f есть суперпозиция функций f1,f2, ... ,fn, если f получается с помощью подстановок этих формул друг в друга и переименованием переменных.

Пример 2.3.

f1 = х12 (конъюнкция); f2 =-x (отрицание).

Возможны две суперпозиции:

1)f=f1(f2) = (—х1)&(—х2) - конъюнкция отрицаний;

2)f=f2(f1) = -(x12) - отрицание конъюнкции.

Порядок подстановки задается формулой.

Всякая формула задает способ вычисления функции, если известны значения переменных.

Пример 2.4.

Построим таблицу значений функции

f(x123)=(х2 Éх3)~( x1Úх2).

Вычисление функции f(x1 х2, х3)

x1 x2 x3 x3 x2Éx3 (x2Éx3) x1 x1 Ú x2 f(x123)

Таким образом, формула каждому набору аргументов ставит в соответствие значение функции. Следовательно, формула так же, как и таблица, может служить способом задания функции. В дальнейшем формулу будем отождествлять с функцией, которую она реализует. Последовательность вычислений функции задается скобками. Принято соглашение об опускании скобок в соответствии со следующей приоритетностью операций: , &, Ú, É и ~.

Графы и деревья

Такая структура, как граф(в качестве синонима используется также термин «сеть»), имеет самые различные применения в информатике и в смежных приклад­ных областях, поэтому познакомимся с основными понятиями теории графов.

Граф G = (V, Е) задается парой конечных множеств V и Е. Элементы первого множества v1, v2,..., vM называются вершинамиграфа (при графическом представ­лении им соответствуют точки). Элементы второго множества e1, e2, ..., eN называ­ют ребрами.Каждое ребро определяется парой вершин (при графическом представ­лении ребро соединяет две вершины графа). Если ребра графа определяются упоря­доченными парами вершин, то такой граф называют ориентированным – орграфом (на чертеже при изображении ориентированного графа на каждом ребре ставят стрелку, указы­вающую его направление). Ориентированный граф с пятью вершинами и семью ребрами изображен на рис. 3.2.

Аксиомы (постулаты) алгебры логики - student2.ru

Рис. 3.2. Пример ориентированного графа

Если порядок ребер не имеет значения, то граф называется неориентированным.

Если две вершины соединены двумя или более ребрами, то эти ребра называют параллельными (например, ребра е4 и е5). Если начало и конец ребра совпадают, то такое ребро называется петлей (например, ребро e7).

Граф без петель и параллель­ных ребер называется простым.

Если ребро ек определяется вершинами viи vj (будем обозначать этот факт следующим образом: еk = (vi, vj), то говорят, что ребро ек инцидентно вершинам vi и vj.

Граф G(E,U) называется конечным, если множество Е вершин конечно. Граф G(E,U), у которого любые две вершины соединены ребром, называется полным. Если хотя бы две вершины соединены несколь­кими ребрами, то такой граф называется мультиграфом. Две верши­ны еi, еj ÎЕ называются смежными, если они соединены ребром. Чис­ло ребер, инцидентных данной вершине еi, называется локальной степенью этой вершины р(еi). Число ребер r графа G(E,U) определя­ется выражением

Аксиомы (постулаты) алгебры логики - student2.ru

где n — количество вершин в графе.

Рассмотрим граф, изображенный на рис. 3.3.

Аксиомы (постулаты) алгебры логики - student2.ru

Рис. 3.3. Ориентированный граф

Множество вершин графа состоит из пяти элементов: Е = {1, 2, 3, 4, 5}, а множество ребер U = {(1, 2), (1, 4), (1, 5), (2, 3), (3, 4), (5, 3)}. Ребро (5, 3) — является ориентированным ребром или дугой. Число ребер в графе определяется по значению локальных сте­пеней для каждой вершины:

р(1) = 3; р(2) = 2; р(3) = 3; р(4) = 2; р(5) = 2; р = (3+2+3+2+2)/2=6.

Важным в теории графов является понятие части графа G(E,U), который обозначается G'(E',U') Í G(E,U).

Множества вершин и ребер части графа являются подмножества­ми вершин и ребер исходного графа Е'ÍЕ, U' ÍU. Многие задачи на графах состоят в определении частей графа с заданными свойствами. Часть графа G'(E',U')ÍG(E,U) называется подграфом графа G(E,U), если Е'ÍЕ, а подмножество U'ÍU образовано только реб­рами, инцидентными вершинам множества Е'.

Полным графом называется граф G(E,U), у которого каждая вер­шина Аксиомы (постулаты) алгебры логики - student2.ru соединена ребрами с остальными вершинами (рис. 3.4).

Аксиомы (постулаты) алгебры логики - student2.ru

Рис. 3.4. Полный граф

Обязанность графов

Маршрутом графа G называется последовательность ребер S=(u1,u2, ... un), в которой каждые два соседних ребра имеют общую вершину, т.е. u1= (e1, e2); u2= (e2, е3); ... un= (en, еn+1). Не исключено, что одно и то же ребро может встречаться несколько раз на одном маршруте.

Две вершины еi и еj называются связанными, если существует мар­шрут из еi в еj.

Компонентой связности графа называется подмножество его вер­шин с инцидентными им ребрами, такое, что любая вершина свя­зана с любой другой вершиной маршрута. Например, из графа на рис. 3.5 можно выделить следующие две компоненты связанности, показанные сплошной линией.

Аксиомы (постулаты) алгебры логики - student2.ru

Рис. 3.5. Компоненты связанности графа

Простой цепью, или простым путем, называется маршрут, в ко­тором ни одно ребро не повторяется дважды. Элементарной цепью или элементарным путем называется маршрут, в котором ни одна верши­на не повторяется дважды. Циклом в графе называется маршрут, у которого начальная вершина совпадает с конечной. Например, следу­ющий граф имеет цикл S = (1, 2, 3, 5, 4, 1) (рис. 3.6).

Аксиомы (постулаты) алгебры логики - student2.ru

Рис. 3.6. Цикл в графе

Цикл, проходящий по всем ребрам графа только один раз, называется эйлеровым циклом. В теории графов доказывается теорема, определяющая, содержит ли граф эйлеров цикл. Оказывается, конечный граф содержит эйлеров цикл тогда и только тогда, когда он свя­зан, и все его локальные степени вершин четные. Важной приклад­ной задачей теории графов является задача поиска в графе цикла, проходящего через каждую вершину только один раз. Такие циклы называются гамильтоновыми циклами.

Задание графа

Граф может задаваться в виде рисунка, аналитически, в виде матрицы. Выше приводилось задание графа в виде рисунка. Анали­тическое задание состоит в задании элементов множества вершин Е={е1, е2, ... еn} и множества ребер U = {u1, u2, ... um}.

Для выполнения различного рода формальных преобразований над графами удобно использовать их матричные задания. Матрица А размерностью n ´ n называется матрицей смежности графа G(E,U), если ее элементы образованы по правилу: элемент матрицы аij= m, если вершины еi и еj соединены m ребрами, и аij=0, если эти вершины не связаны ребрами. Матрица смежности имеет число строк и столбцов, равное количеству вершин графа.

Матрица А размерностью n ´ m называется матрицей инцидент­ности графа G(E,U), если ее элементы образованы по правилу: элемент матрицы bij=1, если вершина еi инцидентна ребру uj и bij=0 в про­тивном случае. Так как каждое ребро инцидентно двум вершинам, то в каждой строке этой матрицы ровно два ненулевых элемента.

Построим матрицы смежности и инцидентности для графа, изображенного на рис. 3.7.

Аксиомы (постулаты) алгебры логики - student2.ru

Рис. 3.7. Пример графа.

Матрица смежности будет состоять из пяти строк и пяти столбцов.

 

Матрица инцидентности будет состоять из пяти строк и шести столбцов.

  а b с d е f

Анализ приведенных здесь понятий и определений показывает, что в качестве моделей графы удобно использовать в тех случаях, когда рассматривается система каких-либо объектов, между которыми существуют определенные связи, отноше­ния, когда изучается структура системы, возможности ее функционирования. В информатике графы используются в разделах: операционные системы, алгорит­мизация, структуры данных, информационное моделирование и др.

Весьма важным является связанный граф, не имеющий циклов, он называется деревом.В дереве любые две вершины связаны един­ственным путем. Вершина называется концевой, если ей инцидентно не более одного ребра; одна из концевых вершин может быть выбрана в качестве корня.

Лес - это любой граф без циклов. На рис. 3.8 показаны возможные деревья с пятью вершинами.

Аксиомы (постулаты) алгебры логики - student2.ru

Рис. 3.8. Примеры деревьев

Деревья бывают также ориентированные и неориентирование.

Нижеследующие определения неориентированного дерева, как легко показать, эквивалентны друг другу. Неориентированное дерево есть связный граф, содержащий п вершин и n-1 ребер, либо связный граф, не имеющий циклов, либо граф, в котором каждая пара вершин соединена одной и только одной простой цепью.

Если G = (X, А) - неориентированный граф с n вершинами, то остовным деревом (или, короче, остовом) графа G называется всякий остовный подграф графа G, являющийся деревом (в смысле приведенного выше определения). Например, если G - граф, показанный на рисунке (а), то граф на рисунке (б) является остовом графа G, как и граф, изображенный на рисунке (в). Из сформулированных выше определений вытекает, что остов графа G можно также рассматривать как минимальный связный остовный подграф графа G, где «минимальность» понимается в том смысле, что никакое собственное подмножество ребер этого остова не образует связный остовный подграф графа G.

Аксиомы (постулаты) алгебры логики - student2.ru

Наши рекомендации