Атом водорода в квантовой механике. Квантовые числа.

Решение задачи об энергетических уровнях электрона для атома водорода (а также водородоподобных систем: иона гелияНе+, двукратно ионизованного лития Li++и др.) сводится к задаче о движении электрона в кулоновском поле ядра.

Потенциальная энергия взаимодействия электрона с ядром, обладающим зарядом Ze (для атома водорода Z = 1), Атом водорода в квантовой механике. Квантовые числа. - student2.ru (223.1)где r — расстояние между электроном и ядром. Графически функция U(r) изображена жирной кривой на рис. 302. U(r) с уменьшением r (при приближении электрона к ядру) неограниченно убывает.

Состояние электрона в атоме водорода описывается волновой функцией y, удовлетворяющей стационарному уравнению Шредингера (217.5), учитывающему значение (223.1): Атом водорода в квантовой механике. Квантовые числа. - student2.ru (223.2)где т — масса электрона, Е — полная энергия электрона в атоме. Так как поле, в котором движется электрон, является центрально-симметричным, то для решения уравнения (223.2) обычно используют сферическую систему координат: r, q, j. Не вдаваясь в математическое решение этой задачи, ограничимся рассмотрением важней­ших результатов, которые из него следуют, пояснив их физический смысл.

1. Энергия. В теории дифференциальных уравнений доказывается, что уравнения типа (223.2) имеют решения, удовлетворяющие требованиям однозначности, конеч­ности и непрерывности волновой функции y, только при собственных значениях энергии

Атом водорода в квантовой механике. Квантовые числа. - student2.ru (223.3)т. е. для дискретного набора отрицательных значений энергии.

Таким образом,как и в случае «потенциальной ямы» с бесконечно высокими «стенками» и гармонического осциллятора, решение уравнения Шредингера для атома водорода приводит к появлению дискретных энергетических уровней. Возможные значения Е1, E2, Е3,... показаны на рис. 302 в виде горизонтальных прямых. Самый нижний уровень Е1, отвечающий минимальной возможной энергии, —основной, все остальные (Еn1, n = 2, 3, ...) —возбужденные. При Е<0 движение электрона являетсясвязанным — он находится внутри гиперболической «потенциальной ямы». Из рисунка следует, что по мере роста главного квантового числа n энергетические уровни располагаются теснее и при n=¥ E¥ = 0. При Е>0 движение электрона являетсясвободным; область непрерывного спектра Е>0 (заштри­хована на рис. 302) соответствуетионизованному атому. Энергия ионизации атома водорода равна Атом водорода в квантовой механике. Квантовые числа. - student2.ru

Выражение (223.3) совпадает с формулой (212.3), полученной Бором для энергии атома водорода. Однако если Бору пришлось вводить дополнительные гипотезы (постулаты), то в квантовой механике дискретные значения энергии, являясь следствием самой теории, вытекают непосредственно из решения уравнения Шредингера.

2. Квантовые числа. В квантовой механике доказывается, что уравнению Шредингера (223.2) удовлетворяют собственные функции Атом водорода в квантовой механике. Квантовые числа. - student2.ru , определяемые тремя квантовыми числами: главным п, орбитальным l и магнитным тl.

Главное квантовое число n, согласно (223.3), определяет энергетические уровни электрона в атоме и может принимать любые целочисленные значения начиная с еди­ницы: Атом водорода в квантовой механике. Квантовые числа. - student2.ru

Из решения уравнения Шредингера вытекает, что момент импульса (механический орбитальный момент) электрона квантуется, т. е. не может быть произвольным, а принимает дискретные значения, определяемые формулой Атом водорода в квантовой механике. Квантовые числа. - student2.ru (223.4)где l — орбитальное квантовое число, которое при заданном n принимает значения

Атом водорода в квантовой механике. Квантовые числа. - student2.ru (223.5)т. е. всего n значений, и определяет момент импульса электрона в атоме.

Из решения уравнений Шредингера следует также, что вектор Ll момента импульса электрона может иметь лишь такие ориентации в пространстве, при которых его проекция Llx на направление z внешнего магнитного поля принимает квантованные значения, кратные ћ: Атом водорода в квантовой механике. Квантовые числа. - student2.ru (223.6)где тl — магнитное квантовое число, которое при заданном l может принимать значения Атом водорода в квантовой механике. Квантовые числа. - student2.ru (223.7)т. е. всего 2l+1 значений. Таким образом,магнитное квантовое число ml определяет проекцию момента импульса электрона на заданное направление, причем вектор момента импульса электрона в атоме может иметь в пространстве 2l+1 ориентации.

Наши рекомендации