Равномерная дискретизация.

Спектр дискретного сигнала. Допустим, что для обработки задается произвольный аналоговый сигнал s(t), имеющий фурье-образ S(f). Равномерная дискретизация непрерывного сигнала s(t) с частотой F (шаг Dt = 1/F) с математических позиций означает умножение функции s(t) на гребневую функцию ШDt(t) = Равномерная дискретизация. - student2.ru d(t-kDt):

sDt(t) = s(t)×ШDt(t) = s(t) Равномерная дискретизация. - student2.ru d(t-kDt) = Равномерная дискретизация. - student2.ru s(kDt)d(t-kDt). (4)

С учетом известного преобразования Фурье гребневой функции

ШDt(t) Û (1/T) Равномерная дискретизация. - student2.ru d(f-nF) = F·ШF(f), (5)

фурье-образ дискретной функции sDt(t):

SF(f) = S(f) * F×ШF(f). (6)

Отсюда, для спектра дискретного сигнала имеем:

SF(f) = F×S(f) * Равномерная дискретизация. - student2.ru d(f-nF) = F Равномерная дискретизация. - student2.ru S(f-nF). (7)

Из выражения следует, что спектр дискретного сигнала представляет собой непрерывную периодическую функцию с периодом F, совпадающую с функцией F×S(f) непрерывного сигнала s(t) в пределах центрального периода от -fN до fN, где fN = 1/2Dt = F/2. Частоту fN (или для круговой частоты wN = p/Dt) называют частотой Найквиста. Центральный период функции SF(f) называют главным частотным диапазоном.

Как правило, шаг дискретизации сигнала (шаг числовых массивов) условно принимают равным Dt = 1, при этом главный частотный диапазон занимает интервал -0.5 £ f £ 0.5, или, в шкале угловых частот, соответственно -p £ w £ p. Примеры равномерной дискретизации аналоговых сигналов s1(t) = exp(-a|t|) и s2(t) = exp(-bt2) (дискретные отсчеты нанесены кружками) и спектры этих дискретных сигналов приведены на рис. 5.2.1 и 5.2.2.

Равномерная дискретизация. - student2.ru Равномерная дискретизация. - student2.ru

Рис. 5.2.1. Дискретные сигналы. Рис. 5.2.2. Спектры дискретных сигналов.

Для того чтобы периодическое повторение спектра, вызванное дискретизацией аналогового сигнала, не изменяло спектр в главном частотном диапазоне (по отношению к спектру исходного аналогового сигнала), необходимо и достаточно, чтобы максимальные частотные составляющие fmax в спектре аналогового сигнала не превышали частоты Найквиста (fmax £ fN = F/2). Это означает, что частота дискретизации сигнала должна быть минимум в два раза выше максимальной частотной составляющей в спектре сигнала:

F = 1/Dt ³ 2fmax, (8)

что обеспечивает выход спектра на нулевые значения на концах главного диапазона, как это имеет место для спектра S2(w) на рис. 5.2.2.

Другими словами, на одном периоде колебаний с частотой fmax должно быть минимум две точки отсчета. Это и понятно – по одной точке отсчета на периоде гармонического сигнала определение частоты и фазы данной гармоники невозможно. Если условие (8) нарушается, искажения частотного спектра исходного аналогового сигнала неизбежны. На рис. 5.2.2 наглядно видно, что частота дискретизации для сигнала s1(t) данному условию не удовлетворяет, спектры периодов перекрылись, и результирующий спектр дискретных отсчетов сигнала s1(t) отличается от фактического спектра сигнала s2(t) (фактический спектр и его периодические повторения в области перекрытия спектра главного частотного диапазона со спектрами боковых диапазонов показаны пунктиром).

Характер возникающих искажений во временной области при нарушении условия (8) можно наглядно видеть на рис. 5.2.3. На рисунке показаны три возможных варианта соотношения частот гармонических сигналов с постоянной частотой их дискретизации.

1. График А – частота гармонического сигнала меньше частоты Найквиста. Дискретным отсчетам может соответствовать только исходная гармоника, амплитуда, частота и фаза которой могут быть однозначно определены по любым трем последовательным точкам (три уравнения, три неизвестных).

2. График В – частота гармонического сигнала равна частоте Найквиста. Это означает периодическое повторение каждой пары последовательных отсчетов, а, следовательно, для решения имеется только два уравнения с тремя неизвестными с возможностью определения только частоты, и то при условии, что начальная фаза сигнала не совпадает с начальной фазой частоты дискретизации (в этом случае все отсчеты нулевые). Амплитуда и фаза сигнала определяются однозначно только при условии совпадения отсчетов с экстремумами гармоники.

Равномерная дискретизация. - student2.ru

Рис. 5.2.3. Дискретизация гармоник с разной частотой.

3. График С – частота гармонического сигнала больше частоты Найквиста. Решение трех уравнений по трем последовательным точкам позволяет определить амплитуду гармоники, но дает искаженные значения частоты и фазы колебания (показано пунктиром). Это так называемый эффект появления ложных (кажущихся) частот (aliasing). Частоты гармонических колебаний выше частоты Найквиста как бы зеркально "отражаются" в главный частотный диапазон от его границ (на частоте Найквиста), что можно видеть на рис. 5.2.2 для действительного спектра сигнала S1(w), показанного точками. Этот эффект аналогичен всем известному эффекту обратного вращения колес автомобиля (и любых других быстро вращающихся объектов) на экранах кино и телевизоров, когда скорость их вращения начинает превышать частоту смены кадров.

Интерполяционный ряд Котельникова-Шеннона.Спектр дискретизированного сигнала (7) представляет собой сумму сдвинутых копий исходного аналогового сигнала с шагом сдвига, равным частоте дискретизации. Очевидно, что если спектры копий не перекрываются, то по центральной копии дискретного спектра можно восстановить исходный аналоговый сигнал с абсолютной точностью. Умножая функцию (6) на прямоугольную весовую функцию ПF(f), равную 1 в пределах главного частотного диапазона [-F/2,F/2] и нулю за его пределами, получаем непрерывный спектр в бесконечных по частоте границах, равный спектру F×S(f) в пределах главного частотного диапазона:

F×S(f) = F×[S(f) * ШF(f)]×ПF(f). (9)

Обратное преобразование Фурье такого спектра должно давать конечный и непрерывный сигнал. Произведем обратное преобразование обеих частей равенства (9):

F·[S(f) * ШF(f)] Û sDt(t), ПF(f) Û F×sinc(pFt).

F×s(t) = sDt(t) * F×sinc(pFt).

s(t) = sinc(pFt) * Равномерная дискретизация. - student2.ru s(kDt)d(t-kDt),

Дискретизированный сигнал sDt(t) = Равномерная дискретизация. - student2.ru s(kDt)d(t-kDt) представляет собой сумму последовательных весовых импульсов Кронекера, сдвинутых на интервал Dt, со значениями веса, равными значениям отсчетов функции s(t) в моменты kDt. При прохождении такого сигнала через систему с импульсным откликом h(t)= sinc(pFt)= sin(pFt)/pFt каждый весовой импульс Кронекера возбудит на выходе соответствующую последовательную серию сдвинутых и масштабированных копий оператора фильтра. Отсюда, с учетом очевидного равенства

d(t-kDt) * sinc(pFt) = sinc[pF(t-kDt)],

выходной сигнал будет представлять собой сумму сдвинутых весовых импульсных откликов системы, где значение веса определяется отсчетами дискретного сигнала:

s(t) = Равномерная дискретизация. - student2.ru s(kDt) sinc[pF(t-kDt)] = Равномерная дискретизация. - student2.ru s(kDt) sinc[p(t/Dt-k)]. (10)

Эта конечная формула носит название интерполяционного ряда Котельникова-Шеннона. Из нее следует, что если наибольшая частота в спектре произвольной непрерывной функции s(t) не превышает частоты ее дискретизации, то она без потери точности может быть представлена в виде числовой последовательности дискретных значений s(kDt), k = 0,1,2,... , и однозначно восстановлена по этой последовательности. В этом и состоит сущность теоремы отсчетов Котельникова. В зарубежной литературе она называется также теоремой Шеннона или теоремой дискретизации (sampling teorem).

Академик В.А.Котельников, 1908-2005. Крупнейший ученый в области радиотехники, радиофизики и информатики. Окончил Московский энергетический институт в 1931 году. С 1931 г. по 1941 г. преподает в МЭИ и ведет научную работу в ЦНИИ связи. В 1933 г. формулирует знаменитую теорему отсчетов, которая носит его имя. В период Великой Отечественной войны (1941-1945 гг.) работал над созданием специальной аппаратуры связи. С 1948 г. по 1953 г. директор и главный конструктор ОКБ МЭИ. В 1953 году избран академиком АН СССР. С 1954 года - директор Института радиотехники и электроники АН СССР. Занимался теорией помехоустойчивой радиосвязи и радиолокации, радиолокационным исследованием планет. Лауреат Ленинской премии, дважды лауреат Государственной премии СССР. Дважды удостоен звания Героя Социалистического труда, награжден шестью орденами Ленина, орденом "За заслуги перед Отечеством" I степени.

По существу, ряд (10) представляет собой частный случай разложения сигнала в соответствии с формулой (2) по системе ортогональных функций интегрального синуса v(t, kDt)= sinc(pF(t-kDt))= sinc(p(t/Dt – k)), образующих базис пространства сигналов s(t). Для проверки ортогональности достаточно вычислить скалярное произведение базисных функций:

Равномерная дискретизация. - student2.ru v(t,nDt) v(t,mDt) dt = Равномерная дискретизация. - student2.ru .

Разложение (10) проще и понятнее, чем разложение в ряды Фурье, что можно видеть на рис. 5.2.4. Вес каждой функции отсчетов sinc[pF(t-kDt)] формирует пиковое значение интегрального синуса в каждой текущей точке t= kDt, равное значению сигнала s(kDt), при этом во всех остальных точках дискретных отсчетов sinc[pF(t-(k±j)Dt))], j= 1,2,… значения интегрального синуса равны нулю. Ряд числовых значений интегрального синуса для дискретных значений t= nDt при суммировании по k полностью эквивалентен гребневой функции:

Равномерная дискретизация. - student2.ru sinc[pF(nDt-kDt)] º ШDt(t).

Однако, в отличие от гребневой функции, в интервале между дискретными отсчетами интегральный синус имеет не нулевые, а определенные осциллирующие значения. Суперпозицией этих значений по текущим значениям t от всех интегральных синусов, осцилляции которых доходят до данного значения t, и образуются значения аналогового сигнала в интервалах между отсчетами.

Равномерная дискретизация. - student2.ru

Рис. 5.2.4. Восстановление непрерывного сигнала по дискретным отсчетам.

Равномерная дискретизация. - student2.ru Рис. 5.2.5. Затухание функции отсчетов.

В принципе, функции отсчетов имеют бесконечные осцилляции, и восстанавливают аналоговый сигнал, бесконечный по аргументу. Амплитуда осцилляций функций отсчетов затухает достаточно медленно (см. рис. 5.2.5). Однако на рис. 5.2.4 нетрудно заметить, что, в силу знакопеременности функций отсчетов по интервалам дискретизации, осцилляции восстанавливаемых кривых с финитным спектром затухают достаточно быстро, и для данных без существенных выбросов и больших перепадов значений определяются, в основном, отсчетами, ближайшими к интерполируемому интервалу. Это позволяет ограничивать интервал суммирования в формуле (10) определенными окрестностями текущих точек интерполяции.

Равномерная дискретизация. - student2.ru Рис. 5.2.6. Изменение масштаба при восстановлении аналоговой функции.

Ряд (10) позволяет простым введением масштабного множителя в аргумент интегрального синуса изменять представление сигнала на временной оси, растягивать или сжимать сигнал:

s(t) = Равномерная дискретизация. - student2.ru s(kDt) sinc[pF(m·t-kDt)].

По аналогичной формуле может выполняться пересчет дискретных данных на другой интервал дискретизации:

s(n·Dtnew) = Равномерная дискретизация. - student2.ru s(kDt) sinc[pF(n·Dtnew-kDt)].

Примеры восстановления аналоговой форму произвольного финитного сигнала и изменения шага дискретизации данных приведены на рис. 5.2.7.

Равномерная дискретизация. - student2.ru

Рис. 5.2.7. Интерполяция по Котельникову-Шеннону.

На рис. 5.2.8 приведено моделирование дискретизации аналогового сигнала, влияние наложение спектров боковых периодов на спектр главного диапазона дискретного сигнала и восстановление из этого спектра аналоговой формы сигнала.

Графики А и Б рисунка – модельный аналоговый сигнал, точки его дискретизации и модуль спектра дискретного сигнала. Вычисление спектра выполнено быстрым преобразованием Фурье (БПФ) и отображает, соответственно, частотный диапазон 0-2fN. Дискретизация выполнена корректно, с выполнением условия (8), о чем можно судить и по спектру дискретного сигнала (график Б, выход на незначимые значения к частоте Найквиста fN).

Кривая S1 на графике В – спектр модельного дискретного сигнала при нарушении условия (8). В данном случае это произойдет при увеличении шага дискретизации в 2 раза, что вызовет уменьшение в 2 раза новой частоты Найквиста и перемещение границы главного диапазона на отметку 0.5fN на графике Б, при этом произойдет перекрытие спектров поддиапазонов. На графике приведены кривые S1a и S1b, которые являются раздельными спектрами правой половины главного диапазона без сложения со спектром правого бокового диапазона (интервал 0-2fN, где fN – частота Найквиста новой дискретизации), и левой половины правого бокового диапазона на том же интервале 0-2fN без сложения со спектром главного диапазона. Хорошо видны «хвосты» спектров, выходящие за границы интервала Найквиста от центров диапазонов и заходящие в соседние диапазоны. Сложением этих спектров в интервале 0-2fN нетрудно убедиться, что полученный результат будет полностью соответствовать спектру S1 новой дискретизации исходного сигнала. Обратим внимание, что сложение спектров рядом расположенных диапазонов может вызывать не только увеличение высокочастотных составляющих (как это можно было видеть на рис. 5.2.2 – спектр S1), ни и их взаимную компенсацию, как имеет место для спектра S1 в данном случае (кривая точками на графике В).

Перекрытие спектров диапазонов вызовет искажение аналоговой формы сигнала, восстановленного из его дискретных отсчетов, что можно видеть на графике Г – кривая s2. В данном случае, при частичной взаимной компенсации перекрывающихся частей спектров, наиболее сильное искажение произошло во второй, высокочастотной части сигнала.

Равномерная дискретизация. - student2.ru

Рис. 5.2.8. Моделирование дискретизации аналогового сигнала.

Дискретизируемые сигналы, как правило, содержат широкополосные шумы, высокочастотные составляющие которых неизбежно перекрываются при периодизации спектра, и увеличивают погрешность восстановления сигналов. Для исключения этого фактора перед проведением дискретизации должно быть обеспечено подавление всех частот выше частоты Найквиста, т.е. выполнена низкочастотная фильтрация сигнала. Если последнее не проведено, то при дискретизации целесообразно в 2-4 раза уменьшить интервал дискретизации относительно оптимального и первой операцией обработки данных выполнить низкочастотную цифровую фильтрацию, после чего можно провести децимацию данных.

Увеличение интервала дискретизации сигналов является довольно распространенной операцией при цифровой обработке данных, и не только при подготовке данных для хранения с целью сокращения их количества. При комплексной обработке данных различной природы интервалы дискретизации этих данных могут оказаться различными, и производится их приведение к одному значению. Аналогичная операция выполняется, как правило, и при создании многослойных информационных пакетов. В таких случаях снижение частоты дискретизации каких-либо данных является вынужденной необходимостью даже с потерей части высокочастотных составляющих информации. Предварительное отфильтровывание отбрасываемых данных перед децимацией (для исключения их попадания в главный частотный диапазон и искажения основной информации) в этом случае является обязательным, особенно при достаточно высокой энергии этих составляющих сигнала. Пример такой децимации приведен на рис. 5.2.8 на графиках В и Г - спектр S2(f) децимированных данных и аналоговый сигнал s2(t), восстановленный по дискретным отсчетам sd(kDt) ↔S2(f). Децимация выполнена непосредственно в частотной области путем смыкания на частотной части 0-fN спектра SM(f) исходного сигнала sm(mDm) с сопряженной частью на интервале 1.5fN- fN, что сокращает новый интервал Найквиста в 2 раза и формирует спектр S2(f), соответствующий дискретному сигналу с увеличенным в два раза интервалом дискретизации данных с полностью подавленной частью спектральных составляющих от 0.5fN до 1.5fN. Такой метод может применяться для децимации (передискретизации) данных с любой кратностью.

Дискретизация с усреднением.Если дискретизация сигнала производится импульсами конечной ширины, то таким импульсам соответствуют средние значения сигнала на интервале длительности импульсов. При длительности импульсов r имеем:

s(kDt) = (1/r) Равномерная дискретизация. - student2.ru s(t) dt. (11)

С использованием селектирующей и гребневой функций эта операция отображается следующим образом:

sDt(t) = (1/r)[s(t) * Пr(t)]ШDt(t). (12)

Соответственно спектр дискретной функции:

SF(f) = [S(f)×sinc(pfr)] * F×ШF(f). (13)

Отсюда следует, что при дискретизации с усреднением спектр S(f) заменяется спектром S(f)×sinc(pfr), периодическое продолжение которого и образует спектр дискретной функции. При обратном преобразовании Фурье и при использовании интерполяционной формулы Котельникова-Шеннона, вместо исходной функции s(t) получаем функцию s'(t) = s(t) * Пr(t)/r, что эквивалентно пропусканию сигнала через фильтр с откликом h(t) = Пr(t)/r, т.е. через низкочастотный сглаживающий фильтр "скользящего" среднего с окном r.

Допустим r=lDt, l£1, F=2afmax, a³1. Для этих условий частотная передаточная функция фильтра записывается в следующем виде: H(f) = sinс[(pl/2a)(f/fmax)]. Если потеря составляющих сигнала на всех частотах не должна превышать 3%, необходимо выполнить условие: sinc(pl/2a)³0,97. При a=1 отсюда следует, что значение l должно быть равно l£0.27, т.е. ширина импульса дискретизации может составлять до 27 % интервала дискретизации.

Отметим, что в выражении (11) значения отсчетов относится к центру интервалов r импульсов дискретизации. Если отсчет будет относиться к концу интервалов r, что имеет место при обработке информации в режиме реального времени, то в выходной функции (12) появится сдвиг на интервал r/2, а в ее спектре соответственно сдвиг фаз на wr/2 (в правой части выражения (5.2.10) добавится множитель exp(-jpfr)).

Дискретизация спектров.Теоремы, доказанные для прямого преобразования Фурье, в такой же мере действительны и для обратного. При дискретизации спектра сигнала с шагом Df динамическое представление сигнала также становится периодическим с периодом Т = 1/Df. Для сохранения возможности точного восстановления сигнала в пределах главного периода (без наложения сигналов соседних периодов) частотный шаг дискретизации должен удовлетворять условию:

Df £ 1/T. (14)

Попутно отметим, что для временной формы каузального сигнала главным периодом принимают интервал от 0 до Т, хотя при обработке данных на ЭВМ это не имеет значения и главный период может устанавливаться от -Т/2 до Т/2.

Информационная тождественность динамической и частотной форм дискретного представления сигнала непосредственно следует из теоремы Котельникова-Шеннона.

Основой любых преобразований при обработке данных обычно является финитный (конечный по длительности) сигнал, зарегистрированный на интервале 0-Т и состоящий из определенных частотных составляющих от 0 до fmax. Оптимальная дискретизация аналогового сигнала без потери точности его восстановления, как рассмотрено выше, соответствует двум отсчетам на периоде максимальной частотной составляющей:

Dt = 1/2fmax, Nt = T/Dt. (15)

где Nt – общее количество отсчетов на интервале Т задания сигнала. Если сигнал зарегистрирован непосредственно в дискретной форме, то он автоматически ограничен по максимальной частоте, т.е. максимальные частоты в таком сигнале равны fmax £ 1/2Dt.

При переводе дискретного сигнала в частотную форму спектр сигнала непрерывен и периодичен с периодом 1/Dt = 2fN. Для оптимальной дискретизации по частоте без потери точности восстановления непрерывного спектра должны выполняться условия:

Df = 1/T = 1/(DtNt), fN = 1/2Dt, (16)

Nf = 2fN/Df = Nt. (17)

Спектр сигнала подвергается каким-либо преобразованиям (обработке), как правило, только в главном частотном диапазоне и тем самым превращается в непериодический сигнал, существующий только в интервале 2fN (от -fN до fN). Значения спектра за пределами главного диапазона по умолчанию полагаются равными нулю. При обратном переводе такого сигнала из частотной формы в динамическую сигнал также является непрерывным и периодическим с периодом 1/Df = T, при этом оптимальная дискретизация по координатам без потери точности восстановления непрерывной формы соответствует условиям:

Dt = 1/2fN, T = 1/Df, (18)

Nt = T/Dt = Nf. (19)

При осуществлении преобразований s(kDt) Û S(nDf), равно как и S(nDf) Û s(kDt), условие Nf = Nt является необходимым и достаточным для полного сохранения информации при преобразованиях сигнала из одной формы представления в другую. Условия (15-19) задают оптимальность преобразований без потерь информации. Если исходный сигнал дискретизирован оптимально и представлен N отсчетами, то уменьшение количества отсчетов при преобразовании неизбежно приводит к определенным потерям информации.

Равномерная дискретизация. - student2.ru Рис. 5.2.9.

Что касается увеличения числа отсчетов при преобразовании функций (уменьшение интервалов дискретизации), то оно всегда возможно, т.к. выходной сигнал преобразования финитных сигналов является непрерывной функцией и, в принципе, интервал дискретизации может быть установлен бесконечно малым. Однако увеличение числа отсчетов не увеличивает ни количества информации, заключенной в исходном сигнале, ни точности ее представления. По существу, такая операция полностью эквивалентна интерполяции исходного сигнала рядом Котельникова-Шеннона. Пример такой операции приведен на рис. 5.2.9.

Отсчеты s(kDt) и огибающая их кривая на рисунке 5.2.9 повторяют (в более детальном масштабе) сигнал s1(t) на рис. 5.2.1, дискретизированный с шагом Dt = 1. Как уже отмечалось, интервал дискретизации данного сигнала оказался завышенным, и спектр сигнала искажен (рис. 5.2.2). При выполнении операции s(kDt) Þ S(nDf) количество точек дискретизации спектра S(nDf) было увеличено в 5 раз по отношению к количеству точек сигнала s(kDt), т.е. Nf = 5Nt. При обратном преобразовании S(nDf) Þ z(kDt), были выполнены условия (18-19), при этом шаг дискретизации сигнала при его восстановлении оказался также в 5 раз меньше исходного (Dt = 0.2). Результат можно видеть на рис. 5.2.9 (кривая z(kDt)). Абсолютно такой же результат дает и интерполяция сигнала s(kDt) рядом Котельникова-Шеннона с переводом на шаг Dt = 0.2. Искажение аналогового сигнала закладывается при его дискретизации, если шаг дискретизации не удовлетворяет условию (8), и при любых дальнейших преобразованиях уже не может быть исправлено, т.к. информация о первоначальной форме аналогового сигнала при некорректной дискретизации утрачивается безвозвратно.

Дискретизация усеченных сигналов.При выполнении условия (8) для сигналов с ограниченным спектром аналоговая форма сигнала может быть восстановлена по дискретным отсчетам, если сигнал на интервале Т его задания является финитным или, по крайней мере, настолько быстро затухающим, что отсчеты сигнала за пределами интервала Т практически равны нулю. Задача дискретизации усложняется для медленно затухающих сигналов, сигналов бесконечной длительности и сигналов со спектром, неограниченным по частоте. Последнее имеет место, если в сигнале присутствуют разрывы и резкие скачки.

В общем случае, длительность сигнала и ширина его спектра не могут быть одновременно ограничены конечными интервалами. Если длительность сигнала ограничена и сигнал урезан в области не нулевых значений, то спектр сигнала неограничен и наоборот. Однако обработка реальных сигналов возможна только с их ограничением, как по координатам, так и по ширине спектра. При этом в качестве оценки корректности ограничения сигналов используется энергетический критерий, согласно которому длительность сигнала Т и практическую ширину спектра W устанавливают такими, чтобы в них была сосредоточена подавляющая часть энергии сигнала. Это достигается при выполнении условий:

Равномерная дискретизация. - student2.ru |s(t)|2 dt = k Равномерная дискретизация. - student2.ru |s(t)|2 dt, (20)

Равномерная дискретизация. - student2.ru |S(w)|2 dw = k Равномерная дискретизация. - student2.ru |S(w)|2 dw, (20')

где k- коэффициент представительности (качества) задания сигнала, значение которого, в зависимости от целевых задач обработки сигналов, может устанавливаться от 0,9 до 0,99.

Допустим, что произвольный сигнал s(t) рассматривается в пределах конечного интервала [0, Т] и принимается равным нулю за его пределами. Такой сигнал может быть получен умножением сигнала s(t) на прямоугольную весовую функцию ПT(t):

sT(t) = s(t) ПT(t).

Для спектра ST(f) функции sT(f) соответственно имеем:

ST(f) = S(f) * Т×sinc(pfT). (21)

Спектр ST(f) неограничен, поскольку неограничен носитель функции sinc(pfT). Отсюда следует, что частота дискретизации функции sT(t) в принципе должна быть бесконечно большой, т.е. корректная дискретизация невозможна. На практике полагают, что спектр ST(f) также определен в конечной области [-W,W]:

S'T(f) = ST(f)×П2W(f),

при этом вне этой области, по оценке Шеннона, для спектра ST(f) справедлива формула:

|ST(f)| » 1/WТ, f Ï (-W,W). (22)

Но усеченная часть спектра определяет разность значений между исходной функцией sТ(t) и функцией s'Т(t), восстановленной по усеченному спектру S'T(f), т.к. отсеченных гармоник спектра будет недоставать для полного восстановления функции sT(f):

eT(t) = sT(t) – s'T(t).

Соответственно, оценка дисперсии погрешности аппроксимации определяется выражением:

s2 = Равномерная дискретизация. - student2.ru e2T(t) » 1/WТ, s » 1/ Равномерная дискретизация. - student2.ru . (23)

Равномерная дискретизация. - student2.ru Рис. 5.2.10. Вид функции погрешности аппроксимации

Эти выражения определяют порядок среднеквадратической погрешности аппроксимации, которая является интегральной по интервалу Т, а не локальной разностью значений sT(t)–s'T(t). Типичный вид погрешности аппроксимации усеченных сигналов приведен на рис. 5.2.10. В точках дискретизации погрешность равна нулю, максимальна на центрах интервалов дискретизации и нарастает при приближении к границам интервала Т.

Физические данные обычно регистрируются по определенным интервалам Т и, как правило, не выходят на нулевые значения на границах интервалов. В этом случае ограничение ширины спектра можно проводить по (23) с учетом допустимой среднеквадратической погрешности аппроксимации данных. Частота W при усечении спектра может рассматриваться в качестве частоты Найквиста для сигнала sT(t) при его дискретизации, что определяет частоту дискретизации не менее F = 2W и количество точек дискретизации не менее N=TF=2WT.

В силу тождественности свойств прямого и обратного преобразования Фурье аналогичная методика может применяться и для оценки условий дискретизации спектров.

Таким образом, дискретизация усеченных сигналов возможна, однако при обработке усеченных сигналов необходимо проявлять осторожность и контролировать как значение среднеквадратической ошибки искажений, так и характер возникающих искажений сигнала и его спектра. Так, например, при усечении функции автокорреляции в спектре мощности сигнала могут появиться отрицательные значения, т.к. функция отсчетов sinc(pfT) в (21) является знакопеременной. Другой пример - проектирование частотных полосовых фильтров. При задании передаточной функции фильтра H(f) в частотной области в виде П-образной функции H(f) = Пr(f) обратное преобразование Фурье дает импульсный отклик фильтра h(t) Û H(f) бесконечно большой длины. Усечение отклика hT(t) = h(t)ПT(t) вызывает изменение передаточной функции фильтра (явление Гиббса): HT(f) = Пr(f) * ПT(f) Þ Пr(f)×Т× sinc(pfT), при этом по краям скачков П-функции появляются затухающие флюктуации с амплитудой первого выброса до 9% от значений коэффициента передачи фильтра в полосе пропускания.

Так как частотный характер искажений, возникающих при усечении сигнала, определяется весовой функцией ПT(t) Û Т×sinc(pfT), то допустимый уровень и форму искажения сигнала можно устанавливать не только подбором интервала Т, но и применением других весовых функций. Так, для исключения появления отрицательных значений в спектрах мощности усечение функций автокорреляции целесообразно выполнять весовыми функциями, которые не имеют отрицательных значений в своих спектрах. Одной из таких функций является, например, треугольная весовая функция (окно Бартлетта).

Соотношение спектров одиночного и периодического сигналов. Спектр ST(f) = S(kDf) периодического сигнала sT(t) с периодом Т дискретен (Df = 1/T). Спектр S(f) одиночного сигнала s(t), заданного на интервале Т, непрерывен и представляет собой спектральную плотность сигнала при T Þ ¥. Но периодический сигнал можно представить и в виде свертки одного периода с гребневой функцией Дирака:

sT(t) = s(t) * ШT(t).

При переходе в частотную область получаем:

ST(f) = (1/T)×S(f)×Ш1/T(f) = S(kDf),

ST(f) = (1/T) Равномерная дискретизация. - student2.ru S(f)d(f-k/T). (24)

Отсюда следует, что спектр периодического сигнала представляет собой дискретизированный спектр одиночного сигнала, нормированный на длительность периода.

С другой стороны, одиночный сигнал s(t) может быть получен из периодического сигнала sT(t) умножением на селектирующий прямоугольный импульс ПT(t):

s(t) = sT(t)×ПT(t).

Спектр одиночного сигнала:

S(f) = T×ST(f) * ПT(f) = Т Равномерная дискретизация. - student2.ru S(kDf)×sinc[pT(f-k/T)], (25)

т.е. непрерывный спектр одиночного сигнала однозначно устанавливается по спектру периодического сигнала (интерполяция рядом Котельникова-Шеннона в частотной области).

Наши рекомендации