Теория атома. Ядерная модель Резерфорда. Теория атома Бора. Квантовые числа, принцип запрета Паули.

К концу 19 века уже в течение 150 лет в Европейских физических лабораториях проводились опыты по исследованию светового излучения различных нагретых газов. С помощью различных оптических приборов было экспериментально установлено, что излучение невзаимодействующих друг с другом атомов состоит из отдельных спектральных линий. Линии в атомных спектрах расположены не беспорядочно, а объединяются в группы, называемые спектральными сериями. Линейчатые спектры атомов имеют индивидуальную структуру, однако были выявлены общие закономерности.

В 1885 г. швейцарский школьный учитель математики Йохан Бальмер обнаружил, что длины волн серии линий атома водорода, лежащей в области видимого спектра связаны соотношением

n = R (1/n2 – 1/m2), R=3.29 1015 Гц – постоянная Ридберга, n и m – целые числа. Исходя из полученной формулы, Бальмер предсказал существования спектральных серий водорода в ультрафиолетовой и инфракрасной области, которые были обнаружены спустя 20 лет.

Частоты линий других атомов могут быть представлены в виде разность двух термов, имеющих более сложный вид, чем для атомов водорода.

Открытие радиоактивности

В первые годы ХХ века были обнаружены новые типы излучений - радиоактивные, названные a, b, и g-излучением. Явление радиоактивности занимались Антуан Беккерель (1852-1908) и супруги Пьер (1859-1906) и Мари 1867-1934) Кюри.

Опыты Резерфорда

В 1907 г. профессор физики Манчестерского университета Эрнст Резерфорд (1871-1937), изучавший проблемы радиоактивности, и его сотрудники исследовали прохождение a-частиц через тонкую металлическую фольгу. a-частицы испускались некоторым радиоактивным веществом, имели скорость порядка 109 см/с и положительный заряд, равный удвоенному электронному. При прохождении через фольги большинство a-частицы отклонялись от первоначального направления на некоторые незначительные углы. Оказалось однако, что некоторое количество a-частиц отклоняется на углы порядка 1800 , что согласно классической теории рассеяния, возможно только в том случае, если внутри атома имеется чрезвычайно сильное ЭМ поле, сконцентрированное в малом объеме и создаваемое зарядом большой массы.

Пример. Противоречие с моделью атома Томсона.

Атом – положительно заряженный шар, внутри которого находится электрон.

При отклонении электрона от положения равновесия возникает квазиупругая сила, под действием которой электрон будет совершать колебания и испускать упругие эл.магн. волны.

Основываясь на экспериментальных данных Резерфорд в 1911 г. предложил ядерную модель атома:

ü в центре атома расположено тяжелое положительно заряженное ядро с зарядом Ze и размерами, не превышающими 10-12 м;

ü вокруг ядра расположено Z электронов, распределенных по всему объему, занимаемому атомом, размеры атома порядка

10-10 м.

В опытах Резерфорда отклонения a-частиц обусловлено действием на них атомных ядер.

Вопрос о том, как конкретно электроны распределены вокруг ядра, оставался открытым. Резерфорд рассматривал возможность планетарной модели атома, согласно которой электрона вращаются вокруг атомного ядра. Ядерная модель, однако, оказалась в противоречии с законами классической механики и электродинамики. Поскольку система неподвижных зарядов не может находиться в состоянии устойчивого равновесия, Резерфорду пришлось предположить, что электроны движутся вокруг ядра по криволинейным траекториям. Но в этом случае электрон движутся с ускорением, и согласно законам классической электродинамики он должен излучать эл.магн. волны, теряя при этом энергию, в результате чего должен в конечном счете упасть на ядро.

Модель атома Бора.

Молодой датский студент Нильс Бор, прибывший в Манчестер в группу Резерфорда, увлекся планетарной моделью атома. В начале 1912 года Бор подготовил для Резерфорда работу «О строении атомов и молекул», в которой предполагал, что в рамках планетарной модели могут существовать некоторые стационарные орбиты электронов, которые каким-то образом должны быть связаны с формулой Планка-Эйнштейна Е=hn. Прорыв был сделан, когда Бор открыл для себя формулу Бальмера.

Для разрешения возникших противоречий в 1913 г. Нильс Бор предложил два постулата:

1. Из бесконечного числа электронных орбит, разрешенных классической механикой, в действительности реализуются только некоторые дискретные орбиты, удовлетворяющие определенным квантовым условиям. Электрон, находясь на такой орбите, не излучает ЭМ волн.

2. Излучение испускается или поглощается в виде светового кванта энергии при переходе электрона из одного стационарного состояния в другое. Величина кванта энергии равна разности энергий стационарных состояний

hn = Е1 – Е2

Согласно постулату Бора осуществляются только те электронные орбиты, для которых момент импульса кратен постоянной Планка

L = mvR = n h/2p

(впервые предположение о квантовании момента импульса было опубликовано Никольсоном в 1912 году).

Используя классическое описание движения электрона как вращения в кулоновском поле ядра, Бор получил аналитические выражения для радиусов стационарных орбит и энергий соответствующих состояний атома:

Теория атома. Ядерная модель Резерфорда. Теория атома Бора. Квантовые числа, принцип запрета Паули. - student2.ru , где r1=0.53 A= 0.53 10-10 м

Теория атома. Ядерная модель Резерфорда. Теория атома Бора. Квантовые числа, принцип запрета Паули. - student2.ru , где Ry=-13.6 эВ.

Теория Бора позволила объяснить спектры атома водорода. Рассчитанное теоретически значение постоянной Ридберга лишь на несколько процентов отличалось от полученного Бальмером. Теория Бора сочетала в себе классический и квантовый подходы к описанию атомных процессов. Она явилась переходным этапом на пути создания квантовой механики, в настоящее время имеет, в основном, историческое значение.

Более тщательное экспериментальное изучение спектра атома водорода показало наличие большого числа спектральных линий, которое уже не описывались теорией Бора. Арнольд Зоммерфельд (1868-1951), теоретик, профессор из Мюнхена, учел эллиптичность орбит электронов, что позволило объяснить дополнительные спектральные линии и потребовало введения дополнительного квантового числа I (орбитального квантового числа). В последнем десятилетии 19 века датчанин Питер Зееман (1865-1943) обнаружил, что в спектре возбужденных атомов водорода, помещенных в магнитное поле, появляются дополнительные спектральные линии (эффект Зеемана). Зоммерфельд предположил, что наблюдаемое явление расщепления спектральных линий в магнитном поле связано с разными ориентациями орбит электрона относительно внешнего поля. Зоммерфельд ввел в рассмотрение еще одно – магнитное квантовое число m.

Более тонкие эксперименты с магнитным полем позволили обнаружить дополнительные спектральные линии (аномальный эффект Зеемана), которые не описывались теорией Бора-Зоммерфельда. Проблемой АЭЗ заинтересовался швейцарский физик-теоретик Вольфганг Паули (1900-1958), который принял приглашение Бора работать в Копенгагене в 1922-23 гг. Размышления над природой АЭЗ привели Паули к мысли о том, что для электрона характерен некий дополнительный вращательный процесс, которому соответствует добавочный момент импульса. Паули предложил ввести в теорию атома четвертое квантовое число, которое может принимать только два значения. Паули стремился понять физическую суть явления и не спешил с публикацией. В то же время два молодых голландских физика Уленбек и Гаудсмит пришли к той же идее. Их руководитель профессор Пауль Эренфест направил их статью для публикации. Впоследствии Уленбек и Гаудсмит получили за эту работу Нобелевскую премию по физике.

Однако оставалось непонятным, почему все электроны в многоэлектронных атомах не переходят в основное состояние. Паули дал ответ на этот вопрос.

Принцип Паули

Итак, состояние каждого электрона в атоме характеризуется четырьмя квантовыми числами:

главным n ( n=1, 2, …)

азимутальным l ( l=1, 2, …, n-1)

магнитным ml ( ml=-l,…,-1,0,+1,…,+l )

спиновым ms ( ms=+1/2, -1/2)

В нормальном (невозбужденном) состоянии атома электроны должны располагаться на самых низких доступных для них энергетических уровнях. Согласно принципу Паули, в одном и том же атоме ( или другой квантовой системе ) не может быть двух электронов, обладающих одинаковой совокупностью квантовых чисел.

В атоме каждому n состоянию могут соответствовать n2 состояний, отличающихся { n, l, ml } , и кроме того спиновое квантовое число может принимать значения ±1/2. Таким образом,

n=1 – 2 электрона,

n=2 – 8 электронов,

n=3 – 18 электронов и т.д.

Совокупность электронов, имеющих одинаковые значения главного квантового числа n, образует оболочку.

Значение n 1 2 3 4 …

Обозначение оболочки K L M N …

Принцип Паули дает объяснение повторяемости свойств атомов. Аналогичными свойствами обладают атомы с одинаковым количеством электронов во внешней оболочке (для полностью заполненной оболочки характерно равенство нулю суммарного орбитального и спинового моментов) ( см. периодическую систему элементов Менделеева : щелочные металлы, металлы, галогены, инертные газы).

Электронные волны в атоме.

Квантовые условия Бора получили простое объяснение на основе дуализма «волна-частица», примененного к находящимся на стационарных орбитах электронам. Связанные с электронами волны рассматривались как стоячие волны, подобные тем, что возникают на закрепленной с двух сторон струне. Тогда на длине орбиты должно укладываться целое число волн

2pR = n l.

Использую соотношение де Бройля, легко получить условие квантования момента импульса.

«Старая» квантовая теория,созданная Планком, Эйнштейном, де Бройлем, Резерфордом, Бором, Зоммерфельдом, Паули и др., смогла объяснить:

ü спектр атома водорода;

ü квантование энергии в стационарных состояниях атома;

ü периодическую систему Менделеева.

Были заложены основополагающие идеи новой квантовой механики, однако полуклассическая теория не смогла ответить на многие важные вопросы.

Наши рекомендации