Конвекция. Конвективный теплообмен. Коэффициент теплоотдачи.

Конвекция, конвективный теплообмен, коэффициент теплоотдачи, термическое сопротивление теплоотдачи, сущность процессов конвективного теплообмена.
Конвекцией называют процесс переноса теплоты при перемещении макрочастиц (газа или жидкости). Поэтому конвекция возможна лишь в среде, частицы которой могут легко перемещаться.
Конвективным называют теплообмен, обусловленный совместным действием конвективного и молекулярного переноса теплоты. Другими словами, конвективный теплообмен осуществляется одновременно двумя способами: конвекцией и теплопроводностью.
Конвективный теплообмен между движущейся средой и поверхностью ее раздела с другой средой (твердым телом, жидкостью или газом) называют теплоотдачей.
Главной задачей теории конвективной теплоотдачи является определение количества теплоты, которое проходит через поверхность твердого тела, омываемого потоком. Результирующий поток теплоты всегда направлен в сторону уменьшения температуры,
При практических расчетах теплоотдачи пользуются законом Ньютона:
Q= б F(tж-tcт) (15-1)
т. е. тепловой поток Q от жидкости к стенке или от стенки к жидкости пропорционален поверхности F, участвующей в теплообмене, и температурному напору (tж — tст, где tст — температура поверхности стенки, а tж— температура среды, омывающей поверхность стенки. Коэффициент пропорциональности б, учитывающий конкретные условия теплообмена между жидкостью и поверхностью тела, называют коэффициентом теплоотдачи.

Свободная и вынужденная конвекция.

Естественная (свободная) конвекция возникает под действием неоднородного поля внешних массовых сил (сил гравитационного, инерционного, магнитного, или электрического поля), приложенных к частицам жидкости внутри системы.

Вынужденная конвекция возникает под действием внешних поверхностных сил, приложенных на границах системы, или под действием однородного поля массовых сил, действующих в жидкости внутри системы. Вынужденная конвекция может осуществляться также за счет запаса кинетической энергии, полученной жидкостью вне рассматриваемой системы.

Теплообмен излучением.

Теплообмен излучением осуществляется посредством электромагнитных волн. Он составляет 90-95% суммарного теплообмена в топках паровых котлов, дуговых сталеплавильных печах, 80-90% ─ вплазменно-дуговых печах и камерах нагревательных печей. Электромагнитные волны распространяются прямолинейно со скоростью света и подчиняются оптическим законам преломления, поглощения, отражения. Тепловое излучение помимо волновых свойств обладает корпускулярными свойствами: энергия излучается телом не непрерывно, а отдельными порциями – квантами и фотонами. Следовательно, излучение обладает корпускулярно-волновым дуализмом:
энергия и импульс сосредоточены в фотонах, а вероятность их нахождения в пространстве обусловлена волновой механикой. Поэтому процессыизлучения и поглощения энергии описываются законами квантовой механики, а процессы распространения энергии – законами волновой теории распространения электромагнитных колебаний.

Теплопередача. Коэффициент теплопередачи.

Теплопередача - теплообмен между двумя теплоносителями через разделяющую их твердую стенку или через поверхность раздела между ними. Теплопередача включает в себя теплоотдачу от более горячей жидкости к стенке, теплопроводность в стенке, теплоотдачу от стенки к более холодной подвижной среде. Интенсивность передачи теплоты при теплопередаче характеризуется коэффициентом теплопередачи, численно равным количеству теплоты, которое передается через единицу поверхности стенки в единицу времени при разности температур между жидкостями в 1 К. Единицы измерения коэффициента теплопередачи Конвекция. Конвективный теплообмен. Коэффициент теплоотдачи. - student2.ru - вт/(м2×К) и [ккал/м2×°С)].

Теплообменные аппараты.

Аппараты, предназначенные для проведения тепловых процессов, называют теплообменными. Эти аппараты имеют разнообразное конструктивное оформление, которое зависит от характера протекающих в них процессов и условий проведения этих процессов.

Теплообменник - одно из немногих технических устройств, хорошо известных даже весьма далеким от техники людям. В самом деле, в каждой квартире под подоконником установлены радиаторы отопления - массивные, ощетинившиеся ребрами чугунные трубы или более современные, более изящные их аналоги. Это теплообменные аппараты, в которых теплоноситель - горячая вода - отдает через металлическую стенку теплоту воздуху наших квартир.

Радиаторы отопления - самые распространенные и самые известные, но, пожалуй, не самые ответственные теплообменники. В конце концов, если они по какой-то причине и откажут, день-другой вполне можно перебиться: включить электрические обогреватели или, в крайнем случае, потеплее одеться. А в промышленности редкое производство может обойтись без надежно работающих теплообменников.

Есть ещё одна область техники, где теплообмен имеет решающее значение. Это транспорт. Любое транспортное средство - автомобиль, трактор, морское судно, самолёт, космический корабль - немыслимо без радиаторов и другой теплообменной аппаратуры.

Основы массообмена.

Самопроизвольный необратимый процесс переноса массы данного компонента в пространстве с неоднородным полем химического потенциала этого компонента (в простейшем случае — с неоднородным полем концентрации или парциального давления этого компонента). В случае термодиффузии М. вызывается также разностью температур. М. между движущейся средой и поверхностью раздела с другой средой называется массоотдачей. Массообменные процессы обычно многостадийны и включают как перенос вещества в пределах одной фазы, так и переход вещества через фазовую поверхность.

М. лежит в основе многих технологических процессов: ректификации, экстракции, абсорбции, адсорбции, сушки, изотопного обмена и других, которые широко используются для разделения веществ и для их очистки от вредных или балластных примесей.

При прохождении через аппарат потока вещества D, концентрация диффундирующего компонента в котором изменяется отy1 до y2, количество вещества G = D (y1 — y2), перешедшее за время τ через межфазную поверхность F, определяется уравнением массообмена

G = K Δc F τ,

где Δс — средняя разность рабочих и равновесных концентраций фазы, движущая сила процесса М., которая может быть выражена через разности химических потенциалов, концентраций, парциальных давлений и т. д.; К — коэффициент массопередачи, численная величина которого определяется физико-химическими свойствами контактирующих фаз, конструкцией аппарата и гидродинамическими условиями процесса. При технологических расчётах часто используется понятие объёмного коэффициента массопередачи, поскольку неизвестна истинная поверхность контакта фаз.

Наши рекомендации