Наша маловероятная вселенная

Чтобы энтропия увеличивалась, как предсказывает Эддингтон, Вселенная должна иметь низкую энтропию. Но как это возможно?

Если долго всматриваешься в бездну, бездна начинает всматриваться в тебя.

Фридрих Ницше

В 1929 году Эдвин Хаббл сделал открытие, которое, казалось, отбросило науку на 400 лет назад. Да, Земля по-прежнему вращалась вокруг Солнца, как и говорил Коперник, но в более широком смысле стало понятно, что прав был Птолемей. Наша галактика Млечный Путь, то есть совокупность окружающих нас звезд, начала представляться центром Вселенной.

Чтобы понять, что же обнаружил Хаббл, давайте сначала вспомним, что он искал. Хаббл изучал галактики – огромные скопления звезд, похожие на наш Млечный Путь. Почти триллион звезд вращается по почти круговым орбитам. Практически все звезды, которые мы наблюдаем в ночном небе, входят в нашу галактику. Если вы посмотрите на небосклон в ясную зимнюю ночь, вдалеке от городских огней, увидите прямо над головой расплывчатое пятно угловым размером с полную Луну. Это созвездие Андромеды[122].

Если рассматривать ночное небо с помощью самых мощных телескопов, нашим глазам предстанут триллионы таких галактик. Во Вселенной существует больше галактик, чем звезд в нашей галактике. Отдельные звезды созвездия Андромеды находятся ближе и «светят» ярче. Мы смотрим сквозь них, чтобы увидеть за ними само созвездие.

Яркая точка в середине состоит из нескольких миллиардов звезд, окружающих то, что, по мнению астрономов, можно назвать супертяжелой черной дырой, которая сама содержит примерно 4 000 000 звезд.

До исследований Хаббла большинство астрономов считали такие галактики огромными скоплениями газа, на заднем фоне которых располагались звезды. В 1926 году ученый получил убедительные доказательства того, что это на самом деле скопления звезд, гораздо дальше отстоящие от нас, чем звезды в созвездиях, имеющих названия. Потом последовало его ошеломляющее открытие: 24 галактики, которые он наблюдал, удаляются от нас весьма необычным образом. Чем дальше от нас галактика, тем быстрее она удаляется. Создавалось впечатление, что прямо в области нашего положения во Вселенной произошел гигантский взрыв и части ее, двигающиеся с наибольшей скоростью, сейчас самые отдаленные.

Хаббл предположил, что этот взрыв произошел около 4 миллиардов лет назад. Однако инструменты для измерения космических расстояний были еще несовершенными. Сегодня, используя его данные с поправкой на ошибки, ученые полагают, что взрыв произошел 14 миллиардов лет назад. Более того, сейчас мы знаем, что открытие Хаббла действительно не только в отношении 24 ближайших к нам галактик, но и для сотен миллиардов других, ставших видимыми благодаря супертелескопу, который в честь ученого назвали «Хаббл»[123].

Это было одно из важнейших, если не самых важных, экспериментальных открытий XX века, и так отмеченного огромным количеством достижений. Его можно соотнести по важности с телеологической теорией Коперника, который 400 лет назад пришел к выводу о том, что Земля вращается вокруг Солнца. Казалось, Хаббл ставит Млечный Путь в центр Вселенной.

Но так интерпретировать его концепцию неправильно. Открытие Хаббла не поставило нас в центр Вселенной, и он прекрасно это осознавал. Поместите себя в собственную систему отсчета любой из удаляющихся галактик. Все они разлетаются все дальше и дальше друг от друга. В вашей системе отсчета все эти объекты удаляются от вас. Неважно, в какой из галактик вы находитесь. Закон Хаббла (закон всеобщего разбегания галактик) действует одинаково для всех.

Это замечательное свойство закона Хаббла легче всего представить на примере батона с изюмом. Вообразите, что вы изюминка в батоне, который, выпекаясь, расширяется. Соседи-изюминки становятся все дальше и дальше от вас. Те, которые находятся от вас на расстоянии, вдвое превышающем расстояние до ближних, удаляются от вас вдвое быстрее. Может создаться впечатление, что вы находитесь в центре батона, но, возможно, все иначе. Тот же самый закон действует в отношении всех изюминок. И хотя публика думала (ошибочно), что открытие Хаббла поставило Землю в центр Вселенной, ученый быстро объяснил, что это не так.

Не нужна никакая кора

Еще одно объяснение расширения Вселенной было куда более фантастичным. Оно было предложено за два года до открытия Хаббла Жоржем Леметром[124], бельгийским священником и профессором физики Лувенского католического университета. Леметр выдвинул модель, основывающуюся на общей теории относительности, согласно которой ранняя Вселенная представляла собой «космическое яйцо, взорвавшееся в момент творения». Этой же идеей Леметр объяснял и возникновение «первичного атома». Некоторые считают, что заслуга в разработке теории расширения Вселенной принадлежит Леметру, а не Хабблу. Однако в своих работах Леметр отталкивался от некоторых предварительных результатов, полученных Хабблом. К тому же они были опубликованы в малоизвестных бельгийских научных журналах, которые за пределами страны мало кто читал. Леметра называли «величайшим ученым, о котором никто почти ничего не знал».

Леметр изучал общую теорию относительности и применял ее ко Вселенной в целом. Открытия Хаббла убедили священника в том, что Вселенная расширяется. Но, по мнению Леметра, взорвалась не материя, заключенная в какой-то части космоса, а сам космос. Эта концепция хорошо согласовывалась с уравнениями Эйнштейна.

Эйнштейн считал, что Вселенная статична, и даже добавил в свои уравнения так называемую космологическую постоянную . По сути, она вводила в уравнения силы отталкивания, позволяющие преодолеть взаимное притяжение космических объектов, что вызвало бы коллапс Вселенной. Эйнштейн посчитал идею Леметра о расширяющейся Вселенной несерьезной и сказал ему: «Ваши вычисления правильные, но ваша физика ужасна».

Однако после открытий Хаббла Леметр стал неожиданно знаменит. 31 января 1931 года газета New York Times вышла под громогласным заголовком: «Леметр выдвигает идею о том, что начало Вселенной положил один-единственный великий первоатом, в котором была сконцентрирована вся энергия». Эйнштейн убрал свою космологическую постоянную и впоследствии сожалел, что применил ее. Известный советский физик Георгий Гамов говорил, что Эйнштейн рассматривал ввод этой постоянной в свои уравнения «как величайшую ошибку всей жизни». (Это ирония судьбы. Сегодня мы верим в то, что космологическая постоянная очень важна и необходима в космологии. Я коснусь этого вопроса во время рассказа о темной энергии.)

В 1933 году газеты сообщали, что после лекции Леметра в Принстоне Эйнштейн встал и сказал: «Это самое красивое и удовлетворительное объяснение творения, какое я только слышал». Он явно изменил свою точку зрения на «ужасную» физику ученого. Леметр также высказал предположение, что космические лучи (радиация), открытые в 1912 году, могли быть «остатками» Большого взрыва. По этому поводу он ошибался. Действительно, это были «остатки», но только в виде микроволнового (реликтового) излучения, а не радиации. Однако люди склонны забывать теоретические ошибки физиков. К сожалению, это не распространяется на экспериментаторов.

Согласно математическим расчетам Леметра, каждая галактика занимала в космосе определенное местоположение. Закон Хаббла появился не из-за движения галактик, а благодаря расширению космического пространства между ними. Он стал еще одним примером действия уравнений Эйнштейна, которые допускали «резиноподобную» природу пространства. Мы уже видели гибкость пространства применительно к релятивистской теории (глава 2), включая парадокс с шестом и сараем и две уловки со скоростью света (глава 5).

Космологическая модель Леметра используется по сей день, хотя теперь ее иногда называют моделью Фридмана−Леметра−Робертсона−Уокера (FLRW) по именам других космологов-теоретиков, участвовавших в ее развитии. Эта модель оправдала предсказания относительно природы очень отдаленных областей нашей Вселенной. Ученые вскоре запустили в научный оборот термин космологический принцип , который суммировал все приближенности и констатировал, что Вселенная везде одинакова и такая же, как и в области нашего существования[125].

Около 14 миллиардов лет назад (если точнее, 13,8) материя находилась в сильно сжатом состоянии (принято говорить «в состоянии сингулярности»), а затем космос взорвался. Материя начала все сильнее и сильнее распадаться по фиксированным координатам. Локально под действием собственных гравитационных сил она сформировалась в некие сгустки, которые сегодня мы называем кластерами (объединением нескольких однородных элементов, которое может рассматриваться как самостоятельная единица, обладающая определенными свойствами). Затем внутри этих сгустков под действием своей гравитации материя организовалась в галактики, а уже внутри них, опять же под воздействием собственной гравитации, сформировалась в молекулярные облака, звезды и планеты, в том числе и нашу. (В Приложении 4 вы найдете стихотворение, описывающее формирование Вселенной.)

Почему имя Леметра не так широко известно, как имя Хаббла? Одна из причин – то, что за ним не стоит суперсовременный телескоп, который назван по его фамилии (как телескоп Хаббла). (Я вырос в Нью-Йорке и никогда не слышал об итальянском путешественнике Вераццано, пока его именем не назвали самый большой мост в городе.) Тем не менее все астрономы и космологи знают Леметра. Закон расширения Вселенной мы называем именем Хаббла, и это частично определяется тем, что начальные выводы Леметра базировались на ранних данных Хаббла, которые в то время не подтверждали их научную справедливость.

В раннем варианте модели Леметра 36 из 38 галактик оказались удаляющимися (приближается к нам только галактика Андромеды). Но скорость их удаления не была пропорциональна расстоянию, как того требовала модель Леметра (хотя точки их положения оказались разбросаны со случайностью, приближающейся к среднему показателю). Судя по всему, Леметр сам поверил, что это противоречие свидетельствовало не о слабости теории, а об ошибках в экспериментах. Его концепции оставалось только дожидаться получения более точных данных. Не исключено, что он опубликовал свою теорию в малоизвестном журнале как раз для того, чтобы никто ее не заметил, окажись она ошибочной.

Действительно, предварительные данные Хаббла могли быть интерпретированы как опровергающие предсказание Леметра. Если бы последний четко написал в своей известной теперь статье что-то вроде: «Когда будут сделаны более точные измерения, все галактики окажутся расположены вдоль одной линии, а скорости их удаления от нас будут пропорциональны разделяющему нас расстоянию», если бы он тогда набрался смелости сделать это однозначное заявление, возможно, сегодня мы называли бы закон расширения Вселенной именем Леметра. И в мире существовал бы мощный телескоп, названный в его честь.

В начале всего…

В модели Леметра, принятой сегодня большинством ученых, ключевым моментом можно назвать расширение космического пространства. Понятие расширения, разумеется, обязано появлением идеям Эйнштейна о «резиноподобном» пространстве, а точнее – его уравнениям общей теории относительности. Однако прежде чем мы выйдем на более глубокие мысли об этом, интересно подумать о философских аспектах расширения.

Большой взрыв не был расширением материи в космосе: это было расширение самого космического пространства. Такое пространство может создаваться и создается все время, в течение которого Вселенная расширяется. Что же случилось в момент Большого взрыва? Существовал ли до этого вообще космос?

Мой любимый ответ (основывающийся на размышлениях, а не научном знании) – нет. Космоса не существовало до первого мгновения Большого взрыва. Откуда он тогда взялся? Очевидно, ответить на этот вопрос невозможно, потому что любой ответ подразумевает (перефразируя известную американскую писательницу Гертруду Стайн[126]), что с ним мы уйдем в бесконечность. Но если не было космического пространства, то из чего все взялось? Мы можем предположить (цитируя известного писателя-фантаста Рода Серлинга), что существует «пятое измерение, неизвестное человеку». Может быть, космическое пространство зародилось там? А может, это всего лишь уловка? Тогда давайте применим свою уловку: проигнорируем вышеприведенный вопрос и зададим другие.

Физики представляют себе пространство не как пустоту, а как субстанцию. Только это не материальная субстанция, а что-то гораздо более фундаментальное. Пространство может колебаться разными способами. Колеблющееся пространство проявляет себя в виде энергии и материи. Один вид колебаний – световая волна, другой – то, что мы называем электроном. Если космического пространства не существовало до Большого взрыва, то ничего не могло и колебаться, поэтому не появились бы ни материя, ни энергия. До того как возникло пространство, не было ничего, что мы могли бы назвать реальным. Это просто невозможно было бы никак описать.

Подчеркиваю – подобные идеи не вполне научные. Это просто размышления ученого. Уверен, я не первый ученый, кто предается таким мыслям. Они не совсем подходят для научно-популярной литературы. Но это как раз те идеи, с которыми ученые любят играть, освобождаясь от жестких рамок профессии. Может, они и приведут меня к чему-то, но пока это просто фантазии.

Пространство и время связаны теорией относительности. Мы не живем отдельно в пространстве и отдельно во времени. Мы живем в пространстве-времени. Подумайте о философском содержании этого постулата. Если во время Большого взрыва появилось пространство, вероятно, то же самое произошло и со временем? Ни пространство, ни время не существовали до Большого взрыва. Вопрос о том, что произошло до начала времени , бессмыслен, потому что этого «до» не было. Это примерно как спросить: «Что произойдет, если положить два объекта на расстоянии меньше нуля? Что будет, если вы заморозите классический объект до температуры ниже абсолютного нуля, так что движение частиц в нем будет медленнее, чем движение вообще?» На все эти вопросы нет ответов, потому что они бессмысленны.

Августину Аврелию такие размышления понравились бы. Он утверждал, что Бог выходит за пределы времени, он вне времени. Подозреваю, что если бы Августин был сегодня жив, он страстно молился бы за то, чтобы именно Бог был тем, кто создал и пространство, и время.

Решение загадки

С открытием Хабблом закона расширения Вселенной мы получили объяснение тому, почему она так высоко организована. Именно высокая организация Вселенной, по мнению Эддингтона, и стала главным условием, определяющим направление стрелы времени . Ранняя Вселенная, как бы вы себе ее ни представляли: компактным куском камня, плавающего в бесконечном пространстве, или моделью Леметра, в которой масса заполняет всю Вселенную, – была очень сжатой. По мере образования пространства вокруг вещества появлялось больше места для распределения материи и энергии.

Расширение Вселенной подразумевает, что ее материя находилась в состоянии сравнительно низкой энтропии, по сравнению с тем, каким бы этот уровень мог быть. Создание космоса означало, что для новых возможных состояний материи появлялось больше пространства. То есть возникали возможности для увеличения энтропии. Имея возраст всего 14 миллиардов лет, Вселенная не смогла еще достичь максимально возможной энтропии. Эта идея – о том, что хотя энтропия продолжает увеличиваться, еще сильнее растет и максимально возможный уровень энтропии Вселенной, – была впервые высказана физиком из Гарварда Дэвидом Лейзером[127].

Нижеследующий пример показывает, как расширение Вселенной увеличивает энтропию. Возьмите цилиндр с газом, заполняющим его с одного конца, и поршнем, отделяющим этот газ от вакуума на другом конце. Представьте, что цилиндр некоторое время находился в покое, поэтому газ внутри него достиг состояния с максимальной энтропией. Очень резко сдвиньте поршень, чтобы газ смог заполнить вдвое больший объем. Сделайте это быстро, чтобы по-прежнему с одного конца в цилиндре оставался газ, а с другого – вакуум. Теперь газ уже не в состоянии максимальной энтропии. Он не останется в прежнем объеме, а потечет и займет новый объем, расширившись до более высокого состояния энтропии.

В каком-то смысле именно это и произошло во время Большого взрыва. Создалось большое пространство, и материя, которая раньше концентрировалась с максимальной энтропией в небольшом объеме, перестала находиться в этом состоянии (максимальной энтропии) в новом большом пространстве. Количество материи не изменилось. Возросло число способов заполнения ею Вселенной. Это объясняет нынешнюю низкую энтропию во Вселенной и, согласно идеям Эддингтона, совершенно однозначно определяет направление стрелы времени . Разумеется, как всегда в науке, ответ на один вопрос порождает много новых вопросов. Больше не нужно спрашивать, почему мы находимся в состоянии низкой энтропии. Теперь речь о другом: почему Вселенная расширяется? Что послужило причиной? Закончится ли это когда-нибудь?

Сможем ли мы когда-нибудь получить окончательный ответ? Думаю, нет. Мы делаем новые открытия, и они оказывают влияние на возможный ответ. Одно из последних – обнаружение темной энергии (я расскажу об этом позднее) – кардинально изменило уравнения будущего расширения Вселенной. Нам достаточно хорошо известны законы физики, но знание Вселенной и ее природы пока ново и неопределенно. Может быть, через несколько десятилетий или даже веков мы обнаружим что-то принципиально свежее относительно причин расширения Вселенной, и это снова изменит наши выводы. Думаю, нас должна радовать мысль о том, что объекты для открытий еще далеко не исчерпаны.

Мифы Древней Греции рассказывают о Сизифе, царе Коринфа, который после смерти навечно был приговорен богами к тому, чтобы закатывать огромные камни на гору, давать им скатиться вниз и снова заталкивать вверх. Его бесплодный труд никогда не закончится. Великий писатель-экзистенциалист Альбер Камю проводил отсюда параллель с нашей жизнью: мы рождаемся, живем, умираем – ради чего? Камю провозглашал, что проживание жизни само по себе великая цель, и делал вывод, что Сизиф счастлив.

То же самое можно сказать и об ученых. Мы никогда не можем ответить на все вопросы. Ответишь на один, и тут же выскакивают новые, еще более сложные. Другая классическая аналогия может быть проведена с головой Гидры: на месте отрубленной у нее вырастали сразу две. Ученым это нравится. Мы при таком раскладе никогда не лишимся работы. И это радует.

Глава 13

Вселенная извергается

Физика создания – природа Большого взрыва…

Из небольшой искры возгорается величественное пламя.

Данте Алигьери

Это сигнал из первоздания.

Далеко позади что-то бормочут микроволны,

Испущенные первовеществом «илемом» в давнем прошлом

При трех градусах по Кельвину.

Они неразличимы в свете звезд.

С извинениями Генри Лонгфелло

Замечательный результат модели Вселенной Леметра: она создает возможность обернуться назад во времени – назад, еще назад и еще. Я заглянул в прошлое на 14 миллиардов лет.

Вы обращаетесь в прошлое все время. Когда смотрите на человека, стоящего от вас в полутора метрах, видите его не сиюминутного: вы видите, каким он был 5 миллиардных долей секунды назад (столько надо свету, чтобы пролететь это расстояние). Поднимая взор на Луну, видите ее тоже не той, какая она сейчас, а какой была 1,3 секунды назад. Когда щуритесь на Солнце, видите, в каком оно было состоянии 8,3 минуты назад. Если Солнце вдруг взорвалось 7 минут назад, то пока мы не имеем об этом ни малейшего представления.

Наиболее отдаленные и древние сигналы из космоса, которые удалось уловить, – космическое микроволновое (реликтовое) излучение. Это так называемые первичные сигналы. Мы верим, что они начали свое путешествие 14 миллиардов лет назад. И когда смотрим на них (с помощью микроволновой камеры), видим Вселенную того времени. Свет (микроволны – это низкочастотный свет) показывает, что существовало во Вселенной огромное время назад и на огромном удалении от нас. Этот свет путешествовал в космосе целых 14 миллиардов лет, чтобы достичь нас.

Чтобы заглянуть назад во время, мы должны исходить из того, что отдаленная от нас на расстояние 14 миллиардов световых лет Вселенная была очень похожа на то, какой была тогда и ближайшая к нам ее часть. Как я уже говорил, этот постулат имеет свое название: космологический принцип. Согласно ему, Вселенная по своей природе гомогенна (как гомогенизированное молоко, с ровным составом по всему объему без сколько-нибудь заметных сгустков) и изотропна (нет направлений с особыми физическими свойствами, в ней отсутствует движение больших масштабов; например, Вселенная не вращается). Если не хотите, чтобы окружающие поняли вашу приверженность такому радикальному представлению, называйте его принципом. Космологический принцип звучит угрожающе. Но если бы вы назвали его моделью булки с изюмом, он не был бы таким убедительным. Совершенный космологический принцип еще более угрожающ. Он был придуман как расширение «обычного», но оказался ложным. Далее я это объясню.

Имеется достаточно доказательств того, что космологический принцип, в общем, верен – во всяком случае, для наших целей. Когда мы изучаем Вселенную, особенно ближнюю ее часть, то видим, что она очень походит на все происходящее в непосредственной близости от нас. Мы находимся в галактике Млечный Путь (все звезды на небе, которые вы можете видеть невооруженным глазом, входят в сгусток из многих сотен миллиардов звезд). Однако, скорее всего, за ее пределами существует огромное множество подобных галактик, которые уходят все дальше и дальше в космическое пространство. Выберите небольшой участок неба и, используя лучшие телескопы, попытайтесь сосчитать видимые галактики и экстраполировать результаты на те районы Вселенной, которые пока остаются неизученными. Таким образом можно прийти к выводу, что видимых галактик свыше сотни миллиардов. В большинстве из них звезд меньше, чем в нашем Млечном Пути.

Хотя во Вселенной имеется много сгустков галактик, они распределены в космическом пространстве повсюду, причем с примерно одинаковой плотностью. Мы с командой университета Беркли в 1970-е годы измеряли микроволновое излучение, приходящее из космоса, и выяснили, что Вселенная демонстрирует однородность с погрешностью в 0,1 %, если рассматривать ее в очень больших масштабах. Недавние измерения спутника WMAP[128](Wilkinson Microwave Anisotropy Probe) показали с точностью до 0,01 %, что Вселенная однородна. Однако можно предполагать, что с повышением точности измерений ее неоднородность все-таки удастся уловить.

Наши рекомендации