Цепи питания, трофические уровни, экологические пирамиды

В экосистеме различают три группы организмов, связанных между собой разнообразными пищевыми взаимоотношениями.

1. Продуценты (от лат. producens – производящий) - организмы, синтезирующие из неорганических веществ (главным образом воды и двуокиси углерода) все необходимые для жизни органические вещества, используя солнечную энергию (все зеленые растения, цианобактерии и некоторые бактерии), или энергию окисления неорганических веществ (серобактерии, железобактерии и др.). Обычно под продуцентами понимают зеленые хлорофиллоносные растения, дающие первичную продукцию. Общий вес сухого вещества фитомассы (массы растений) оценивается в 2,42х1012 т. Это составляет 99% всего живого вещества на Земле. И лишь 1% приходится на долю гетеротрофных организмов.

Поэтому только растительности планета Земля обязана существованию на ней жизни. Именно зеленые растения создали необходимые условия для появления и существования вначале разнообразного доисторического зверья, а затем и человека. Погибая, растения аккумулировали энергию в отложениях каменного угля, торфе и даже нефти.

Растения-продуценты дают человеку пищу, сырье для промышленности, лекарства. Они очищают воздух, задерживают пыль, смягчают температурный режим воздуха, приглушают шумы. Благодаря растительности существует то огромное разнообразие животных организмов, которыми населена Земля. Продуценты составляют первое звено в пищевой цепи и лежат в основе экологических пирамид.

2. Консументы (от лат consumo - потребляю), потребители - гетеротрофные организмы, которые питаются готовым органическим веществом. Консументы сами не могут строить органическое вещество из неорганического и получают его в готовом виде, питаясь другими организмами. В своих телах они преобразуют органику в специфические формы белков и других веществ, а в окружающую среду выделяют отходы, которые образуются в процессе их жизнедеятельности. Количество органического вещества (биомасса), образованного консументами носит название вторичной продукции.

К консументам (потребителям) относятся животные и человек. К ним также можно отнести и растения-паразиты, которые в своих клетках не имеют хлорофилла, и которые не могут самостоятельно образовывать органические вещества.

Кузнечик, заяц, антилопа, олень, слон, то есть травоядные животные – это консументы первого порядка. Жаба, схватившая стрекозу, божья коровка, питающаяся тлей, волк, закусывающий зайцем, - все это консументы второго порядка. Аист, поедающий лягушку, коршун, уносящий в небо курицу, змея, глотающая ласточку – консументы третьего порядка.

3. Редуценты (от лат. reducens, reducentis — возвраща­ющий, восстанавливающий) — организмы, разрушающие мертвое органическое вещество и превращающие его в неорганические вещества, которые в состоянии усваивать другие организмы (продуценты).

Основными редуцентами являются бактерии, грибы, простейшие, т.е. находящиеся в почве гетеротрофные микроорганизмы. Если снижается их активность (например, при использовании человеком сильно действующих пестицидов), то ухудшаются условия для продукционного процесса растений и консументов. Мертвые органические остатки, пусть это будет гниющий в лесу древесный пень, или труп какого-либо животного не исчезают в никуда. Обычно для процесса их утилизации мы используем глагол «гнить» или «перегнивать». Все это так, но без участия особых организмов сама по себе мертвая органика не смогла бы перегнить. В качестве могильщиков и выступают редуценты (деструкторы, разрушители).

Характерная черта этих организмов – способность к разложению. Они окисляют мертвые органические остатки до углекислого газа, воды и простых солей. Редуценты полностью разлагают все растительные и животные остатки до неорганических составляющих, которые снова могут быть вовлечены в круговорот веществ, тем самым, замыкая его. Они вызывают брожение и гниение остатков живых существ и разнообразных органических отходов. Конечная цель работы редуцентов – разложение мертвого органического вещества на составляющие его компоненты. Так восстанавливается неорганическая материя.

Энергия, содержащаяся в одних организмах потребляется другими организмами. Перенос веществ и заключенной в них энергии от автотрофов к гетеротрофам, происходящий в результате поедания одними организмами других, называется пищевой цепью. Число звеньев в ней может быть различным, но обычно их бывает от 3 до 5.

Огромную роль в воспроизводстве жизни играет энергия Солнца. Количество этой энергии очень велико (примерно 55 ккал на 1 см­­2 в год). Из этого количества продуценты — зеленые растения в результате фотосинтеза фиксируют не более 1 — 2 % энергии, а в пустынях и в океане — сотые доли процента. Энергия, содержащаяся в органическом веществе одних организмов, потребляется другими организмами. Число звеньев в ней может быть различным, но обычно их бывает от 3 до 5. Совокупность организмов, объединенных одним типом питания и занимающих определенное положение в пищевой цепи носит название трофический уровень. К одному трофическому уровню принадлежат организмы, получающие свою энергию от Солнца через одинаковое число ступеней.

Первый трофический уровень занимают автотрофы, зеленые растения (продуценты), первичные потребители солнечной энергии. Второй - растительноядные животные (консументы первого порядка), третий - хищники, питающиеся растительноядными животными (консументы второго порядка), и паразиты первичных консументов. И, наконец, вторичные хищники (консументы третьего порядка) и паразиты вторичных консументов образуют четвертый трофический уровень. Трофических уровней может быть и больше, когда учитываются паразиты, живущие на консументах предыдущих уровней.

Простейшая пищевая цепь (или цепь питания) может состоять из фитопланктона, затем более крупных планктонных ракообразных и заканчивается китом, который фильтрует этих ракообразных из воды. Всем известная примета погоды, когда ласточки летают низко над землей, тоже повинуется биологическому закону пищевой цепи. Как известно, при низком полете ласточек обычно ожидают ухудшения погоды и близящегося дождя. Комары - любимое лакомство ласточек постоянны в своей любви к атмосферному давлению. Если оно понижается, то меняют «воздушный коридор» и комары, а за ними вниз к земле устремляются ласточки. Комары для них - одно из основных звеньев в пищевой цепи. Глядя на низко летающих пернатых, мы говорим, что это - к дождю, и в большинстве случаев оказываемся правыми.

Как-то крестьяне обратились к великому Чарльзу Дарвину, чтобы он подсказал им как увеличить урожаи клевера, которые стали катастрофически падать. «Заведите кошек», — ответил ученый. Крестьяне подумали, что он совсем выжил из ума. Но Дарвин знал то, чего не знали крестьяне. Клевер опылялся шмелями, гнезда которых стали разорять расплодившиеся мыши. Вот вам и еще один пример пищевой цепи: клевер — шмели — мыши — кошки (или лисицы).

Еще один пример пищевой цепи. Начинается такая цепь с улавливания солнечной энергии растением. Бабочка, питающаяся нектаром цветка, представляет собой второе звено в этой цепи. Стрекоза, одно из самых хищных летающих насекомых, нападает на бабочку. Спрятавшаяся среди зеленой травы лягушка ловит стрекозу, но сама служит добычей для такого хищника, как уж. Это уже пятое звено пищевой цепи. Целый день уж мог бы переваривать лягушку, но еще не успело зайти солнце, как он сам стал добычей другого хищника - ястреба. Цепь питания замкнулась. У ястреба, так же как и у кита особых врагов нет. Вот только человека им стоит опасаться.

Пищевая цепь, идущая от цветка через стрекозу, лягушку, ужа к ястребу, указывает путь органических веществ, а также содержащихся в них энергии. Общее правило, касающееся любой пищевой цепи, гласит, что на каждом трофическом уровне сообщества большая часть поглощаемой с пищей энергии тратится на поддержание жизнедеятельности, рассеивается в виде тепла, а у светящихся организмов - в виде света, причем ни одна из этих форм энергии не может быть использована другими организмами. Таким образом, потребленная пища на каждом трофическом уровне ассимилируется не полностью. Значительная ее часть тратится на обмен веществ. При переходе к каждому последующему звену пищевой цепи общее количество пригодной для использования энергии, передаваемой на следующий, более высокий трофический уровень, уменьшается.

Трофическую структуру биоценоза и экосистемы обычно отображают графическими моделями в виде экологических пирамид. Такие модели разработал в 1927 году английский эколог Чарлз Элтон.

Экологические пирамиды – это графические модели (как правило в виде треугольников), отражающие число особей (пирамида чисел), количество их биомассы (пирамида биомасс) или заключенной в них энергии (пирамида энергии) на каждом трофическом уровне и указывающие на понижении всех показателей с повышением трофического уровня.

Различают три типа экологических пирамид.

1. Пирамида чисел (численностей) - отражает численность отдельных организмов на каждом уровне. Обычно в экологии пирамида численностей употребляется редко, так как из-за большого числа особей на каждом трофическом уровне очень трудно отобразить структуру биоценоза в одном масштабе.

2. Пирамида биомасс - соотношение между продуцентами и консументами, выраженное в их массе (общем сухом весе, энергосодержании или другой мере общего живого вещества). Обычно в наземных биоценозах общий вес продуцентов больше, чем консументов. В свою очередь общий вес консументов первого порядка больше, нежели консументов второго порядка и т.д. Если организмы не слишком различаются по размерам, то на графике обычно получается ступенчатая пирамида с суживающейся верхушкой.

Однако зачастую (это касается в основном водных экосистем) можно получить так называемую обращенную(перевернутую) пирамиду, когда биомасса продуцентов оказывается меньшей, нежели консументов, а иногда и редуцентов. Например, в океане при довольно высокой продуктивности фитопланктона общая масса его в данный момент может быть меньше, чем у потребителей-консументов (киты, крупные рыбы, моллюски).

3. Пирамида энергии - отражает величину потока энергии, скорость прохождения массы пищи через пищевую цепь. На структуру биоценоза в большей степени оказывает влияние не количество фиксированной энергии, а скорость продуцирования пищи.

Установлено, что максимальная величина энергии, передающаяся на следующий трофический уровень (от одного звена пищевой цепи к другому), может в лучшем случае составлять 30% от предыдущего, а во многих биоценозах, пищевых цепях эта доля передаваемой энергии составляет всего 1%.

В 1942 г. американский эколог Р. Линдеман сформулировал закон пирамиды энергий, согласно которому с одного трофического уровня на другой через пищевые цепи переходит в среднем около 10% энергии, поступившей на предыдущий уровень экологической пирамиды. Остальная часть энергии тратится на обеспечение процессов жизнедеятельности. Организмы в результате процессов обмена теряют в каждом звене пищевой цепи около 90% всей энергии.

Если заяц съел 10 кг растительной массы, то его собственная масса может увеличиться на 1 кг. Лисица или волк, поедая 1 кг зайчатины, увеличивают свою массу уже только на 100 г, или на 1% от биомассы растений, съеденных зайцем. В случае древесных растений эта доля много ниже из-за того, что древесина плохо усваивается организмами. Для трав и морских водорослей эта величина значительно выше, поскольку у них отсутствуют трудноусвояемые ткани. Однако общая закономерность процесса передачи энергии сохраняется: через верхние трофические уровни ее проходит значительно меньше, чем через нижние. Вот почему большие хищные животные всегда редки, и не существует хищников, которые питались бы волками. В таком случае они просто не прокормились бы, настолько волки немногочисленны.

ЭКОСИСТЕМА И БИОГЕОЦЕНОЗ

В истории экологии 20-40-е годы XX столетия примечательны тем, что именно в это время многие экологи искали ту основную структурную единицу природного целого, которая может лежать в основе биосферных процессов. Англичанин Тенсли предложил такой единицей считать экосистему. В России, а затем и в Советском Союзе развитие теоретической экологии шло по несколько иному руслу. Естественнонаучные взгляды формировались под влиянием воззрений ученых, которые относились к традиционно сильной в России школе лесоведения и лесоводства. Среди них следует отметить прежде всего таких выдающихся ученых, как Г.Ф. Морозов, издавший классический труд «Учение о лесе», Г.Н. Высоцкий, М.Е. Ткаченко и др. Большое влияние на естествоиспытателей того времени оказали также идеи известного почвоведа В.В. Докучаева и геохимика, основателя учения о биосфере В.И. Вернадского.

Еще в 1899 г. В.В. Докучаев писал, что в последнее время все больше формируется и обособляется одна из наиболее интересных дисциплин в области современного естествознания, а именно учение о многогранных соотношениях и взаимоотношениях (а одновременно и о законах, управляющих вековыми изменениями), которые существуют между неживой и живой природой: между поверхностными горными породами, пластикой земли, почвами, наземными и почвенными водами, климатом страны и растительными и животными организмами, в том числе и человеком, гордым венцом природы.

Такой дисциплиной, возникшей в недрах лесной геоботаники и оформившейся впоследствии в фундаментальную науку со своими задачами и методами, является биогеоценология (от греч. bios - жизнь, ge - земля, koinos - общий). Основоположником биогеоценологии стал выдающийся геоботаник, лесовод и эколог академик Владимир Николаевич Сукачев, предложивший свою трактовку структурной организации биосферы. Сукачев посвятил свою жизнь разработке общих вопросов фитоценологии - науки о растительных сообществах (фитоценозах). В своих работах он придавал большое значение изучению межвидовых и внутривидовых взаимоотношений растений в растительных сообществах.

Биогеоценоз (био... + гео... + гр. koinos - общий) - участок суши с однородными природными явлениями (атмосфера, горная порода, растительность, животный мир, микроорганизмы, почва, гидрологические условия), которые объединены обменом веществ и энергии в единый природный комплекс.

Сущность биогеоценоза Сукачев видел в процессе взаимного обмена веществом и энергией между составляющими его компонентами, а также между ними и окружающей внешней средой. Важная особенность определения биогеоценоза - то, что он связан с определенным участком земной поверхности.

Исходным понятием при определении биогеоценоза был геоботанический термин «фитоценоз» - растительное сообщество, группировка растений с однородным характером взаимоотношений между ними самими и между ними и средой. Растения развиваются на вполне конкретном субстрате - почве, представляющем собой органико-минеральное естественноисторическое природное образование, которое населено микроорганизмами. Еще одним природным компонентом, с которым непосредственно контактируют растения, является атмосфера. Также важны для характеристики биогеоценоза условия увлажнения. Любой фитоценоз всегда населен разнообразными животными.

Объединяя все указанные составляющие в одно целое, мы получим структуру биогеоценоза. Она включает следующие функционально связанные части. Это фитоценоз - растительное сообщество (автотрофные организмы, продуценты); зооценоз - животное население (гетеротрофы, консументы) и микробоценоз - различные микроорганизмы, представленные бактериями, грибами, простейшими (редуценты). Эту живую часть биогеоценоза Сукачев относил к биоценозу. Неживую, абиотическую часть биогеоценоза слагают совокупность климатических факторов данной территории – климатоп, биокосное образование - эдафотоп (почва) и условия увлажнения (гидрологические факторы) - гидротоп. Такая совокупность абиотических компонентов биогеоценоза носит название биотоп. Все взаимодействия компонентов биогеоценоза связаны между собой совокупностью пищевых цепей и взаимообусловлены. Каждый компонент в природе неотделим от другого. Главным созидателем живого вещества в пределах биогеоценоза является фитоценоз - зеленые растения. Используя солнечную энергию, зеленые растения создают огромную массу органического вещества. Состав и масса такого вещества зависят главным образом от особенностей атмосферы и почвенных условий, которые определяются, с одной стороны, географическим положением (зональность, отражающаяся существованием определенных типов биомов), а с другой - рельефом местности и расположением фитоценоза. От состава и характеристики растительности зависит существование комплекса гетеротрофов. В свою очередь биоценоз в целом определяет состав и количество органического вещества, попадающего в почву (степные богатые черноземы, слабогумусированная почва бореальных лесов и крайне бедные почвы влажного тропического леса). Животные в процессе своей жизнедеятельности также оказывают разнообразное влияние на растительность. Исключительно важны взаимодействия между микроорганизмами и растительностью, микроорганизмами и позвоночными и беспозвоночными животными.

Таким образом, развивая идею биогеоценоза и теорию биогеоценологии, В.Н.Сукачев под биогеоценозом понимал сообщество животных и растений вместе с отвечающими ему условиями почвы и атмосферы.

Биогеоценоз, как структурная единица биосферы сходен с предложенной Тенсли трактовкой экосистемы. Биогеоценоз и экосистема–понятия сходные, но не одинаковые. Биогеоценоз следует рассматривать как иерархически элементарную комплексную, т.е. состоящую из биотопа и биоценоза, экосистему. Каждый биогеоценоз является экосистемой, но не каждая экосистема соответствует биогеоценозу. В основе обеих формулировок лежит принцип единства живых и неживых компонентов биологических систем.

Прежде всего, любой биогеоценоз выделяется только на суше. На море, в океане, и вообще в водной среде биогеоценозы не выделяются. Биогеоценоз имеет конкретные границы. Они определяются границами растительного сообщества – фитоценоза. Образно говоря, биогеоценоз существует только в рамках фитоценоза. Там, где нет фитоценоза, нет и биогеоценоза. Понятия экосистема и биогеоценоз совершенно тождественны (одинаковы) только для таких природных образований, как, к примеру, лес, луг, болото, поле. Лесной биогеоценоз = лесная экосистема; луговой биогеоценоз = луговая экосистема и т.п. Для природных образований, меньших или больших по объему, нежели фитоценоз, либо там, где фитоценоз выделить нельзя, применяется только понятие экосистема. Например, кочка на болоте – экосистема, но не биогеоценоз. Текущий ручей – экосистема, но не биогеоценоз. Точно также только экосистемами являются море, тундра, влажный тропический лес и т.п. В тундре, в лесу можно выделить не один фитоценоз, а множество. Это совокупность фитоценозов, представляющих более крупное образование, нежели биогеоценоз.

В этом отличие биогеоценоза от экосистемы. Экосистема может быть пространственно и мельче, и крупнее биогеоценоза. Экосистема - образование более общее, безранговое. Это может быть и участок суши или водоема, прибрежная дюна или небольшой пруд, и вся биосфера в целом. биогеоценоз ограничен границами растительного сообщества – фитоценоза и обозначает конкретный природный объект, занимающий определенное пространство на суше и отделенный пространственными границами от таких же объектов. Это реальная природная зона, в которой осуществляется биогенный круговорот.

Наши рекомендации