Геодинамические природно-техногенные процессы и устойчивость геологической среды.
Геодинамическими природно-техногенными процессами называют:
· извержения вулканов;
· изменения напряженного состояния горных пород, приводящие к уплотнению, разрушениям, обвалам, осыпям и другим гравитационным процессам;
· сейсмичность, обусловленную удаленными, местными естественными и техногенными землетрясениями;
· оползневые процессы и абразию берегов, вызываемые природными процессами и инженерно-технической деятельностью;
· карстовые явления, связанные с суффозией (вымыванием) рыхлых пород и растворением карбонатных пород подземными водами, возрастающими при изменении их режима под воздействием природно-техногенных факторов;
· криогенные процессы, сопровождающиеся переходом температуры пород от отрицательной к положительной и приводящие к деструкции мерзлоты, а значит, к изменению физико-механических и прочностных свойств горных пород.
Природные геодинамические процессы развиваются или в виде плавных ритмичных изменений с периодами от секунд до миллионов лет, что является признаком " порядка " в литосфере и на Земле, или в виде катастрофических проявлений - " хаоса " [Атлас временных вариаций природных процессов, 1994]. " Порядок " и " хаос " определяются как земными, так и космическими причинами и передаются через физический вакуум. Он характеризуется безмассовой энергией высокой плотности и наличием колебаний. Сложение ритмов разной природы, например влияния Солнца, планет, Луны, может привести к резонансам, вызывающим катастрофы. Поскольку геологическая среда является неоднородной, состоящей из твердых частиц, пустот, флюидов, слоев, блоков и т.п. с разным напряженным состоянием, то ритмы и катастрофы передаются по-разному и фиксируются в породах неодинаково. А.Синяковым высказана гипотеза локальных геофизических резонансов (ЛГР), согласно которой сложение взаимодействий разных объектов Солнечной системы и космоса может быть направлено в некоторую локальную часть Земли, в " заданное " время (прошедшее и будущее). Возникший здесь ЛГР оказывает мощное воздействие на природу, технику, человека, что и приводит к природно-техногенным катастрофам, а также к нарушениям функциональной деятельности людей (оцепенение), сопутствующим техногенным катастрофам. Разработанные им алгоритмы, программы и результаты математического моделирования позволили объяснить некоторые антропогенно-техногенные катастрофы локальным геофизическим резонансом.
Современное состояние инженерно-геологических условий и прогноз их изменений под действием геодинамических природных и техногенных процессов и факторов можно охарактеризовать введенным В.Т.Трофимовым понятием устойчивости геологической среды (УГС). Под УГС следует понимать зависимость геологической среды (ГС) от состояния и скорости развития эндогенных (внутренних) и экзогенных (внешних) природных, а также техногенных процессов. Они, в свою очередь, изменяют геолого-геофизические свойства: физико-механические и деформационно-прочностные, характеризующие тензо- и виброчувствительность; водно-физические свойства, меняющие ее флюидочувствительность, и геофизические (плотность, намагниченность, электропроводность, упругие параметры, теплопроводность и др.), которыми и определяются аномалии физических полей.
Наблюдается непрерывное усиление естественных и техногенных геодинамических процессов. Плавные, эволюционные процессы приводят к отклонению состояния литосферы от оптимального, а катастрофические - к разрушению среды обитания и гибели людей.
Основными разделами геодинамической экогеофизики являются: экосейсмология, экогравитация, экогидрогеофизика, экокриология.
2.1.1 Экосейсмология.
Чтобы изучить геодинамическую и особенно сейсмологическую устойчивость геологической среды, надо, прежде всего, определить ее геолого-геофизические свойства, а затем оценить динамику их изменений посредством сейсмоэкомониторинга. Физико-геологической основой сейсмомониторинга является высокая тензочувствительность и флюидочувствительность границ блоков литосферы, проходящих, как правило, по тектоническим нарушениям, к эндогенным и экзогенным воздействиям, нередко обусловленным космическими и техногенными физическими полями [Разработка концепции мониторинга природно-техногенных систем, 1993].
Методика сейсмомониторинга сводится к изучению деформации оснований сооружений с помощью деформографов и наклономеров, а также напряженного состояния, физико-механических и прочностных свойств среды полевыми, акваториальными и скважинными сейсмоакустическими методами. К полевым и акваториальным относятся методы преломленных (МПВ) и отраженных (МОВ) волн. При исследовании в скважинах используются методы акустического профилирования и просвечивания и микросейсмокаротаж. По скоростям продольных ( ) и поперечных ( ) волн, а также их затуханиям и рассеяниям с помощью теоретических и экспериментально установленных зависимостей можно оценить пористость, динамический модуль упругости, коэффициент крепости пород и другие параметры (см. 1.4). Для точного определения этих же параметров необходимы разномасштабные (полевые, скважинные измерения на образцах) геолого-геофизические экспериментальные работы на изучаемом участке. С их помощью устанавливаются корреляционно-регрессионные уравнения для определения физико-механических и деформационно-прочностных свойств пород через данные сейсмоакустических наблюдений (см. 5.3).
Методика сплошных съемок изучаемых площадей, кроме определения физико-механических и прочностных свойств, должна обеспечить микросейсморайонирование, предназначенное для уточнения имеющихся карт регионального сейсмического районирования с точки зрения изменения ожидаемой балльности землетрясений. Определив особенности геолого-тектонического строения разных участков: наличие зон тектонических нарушений, трещиноватости, глинистых пород с плывунами, растепленных мерзлых пород или, наоборот, прочного скального основания мерзлых пород, можно уточнить балльность до 2 баллов 12-балльной шкалы сейсмичности. Точный количественный расчет балльности проводят на стационарных или временных сейсмических станциях, где автоматически в течение длительного времени регистрируются упругие колебания разных интенсивностей и частот. Приращение балльности какого-то участка по сравнению с данными регионального сейсмического районирования свидетельствует о его меньшей устойчивости к дальним, ближним или вызванным искусственно землетрясениям. Убывание балльности указывает на наличие устойчивых к ним массивов горных пород. Вспомогательную роль при районировании территории по устойчивости к землетрясениям, обвалам и другим динамическим процессам играют гравиразведка, магниторазведка, электромагнитные профилирование и зондирование.
Если сейсмическое и микросейсмическое районирование обеспечивает прогнозирование места и балльности ожидаемых землетрясений, то предсказание времени землетрясений - проблема более сложная. Она, являясь сердцевиной сейсмомониторинга, с той или иной степенью приближения решается комплексом режимных геофизических методов:
· изучением изменений упругих параметров среды и шумов (сейсмическая эмиссия или шумовая сейсмотомография), позволяющим выявить наиболее активные участки среды, строить временные ряды наблюденных упругих процессов, статистическая обработка которых позволяет дать прогноз этих процессов на будущее;
· регистрацией естественных электромагнитных полей космического и земного происхождения (электрическая эмиссия), с помощью которой намечаются подходы к предсказанию землетрясений;
· анализом концентрации газов (радон, гелий, аргон и др.), проникающих из глубин за счет раскрытия трещин перед землетрясениями ( " газовое дыхание Земли " ), и др.
В целом к прогнозу землетрясений подходят путем комплексного анализа предвестников землетрясений с учетом полевых, лабораторных, экспериментальных и теоретических работ и накопленного мирового эмпирического опыта [Разработка концепции мониторинга природно-техногенных систем, 1993]. К предвестникам сильного землетрясения, как отмечалось выше, относятся аномальные деформации блоков земной коры, статистический анализ слабой сейсмичности (сейсмотомография), особый вид вариаций геомагнитных и электромагнитных полей, изменение дебита, температуры, химического состава подземных вод и десятки других факторов. Учет множества факторов позволяет в настоящее время давать долгосрочный (на десятки лет вперед) и среднесрочный (годы и месяцы) прогнозы. Что касается краткосрочного прогноза (дни и часы), то при существующей сети наблюдений и теории сейсмологии он не проводится.
Наряду с природными существуют возбужденные землетрясения (наведенная сейсмичность). Они возникают при перераспределении упругих напряжений в геологической среде под действием антропогенно-техногенных факторов (крупные города и промышленные объекты, шахты и карьеры, водохранилища и закачка вод в скважины, подземные воды и горные удары на шахтах и т.п.). Подобные факторы могут либо сами создавать землетрясения, либо служить спусковым " крючком " для природных землетрясений.
2.1.2.Экогравитация.
Экогравитация объединяет процессы механического перемещения горных пород под действием силы тяжести на склонах гор, берегах морей, озер, рек. Такие перемещения возникают как в результате экзогенной геодинамики, так и провоцируются эндогенными процессами (землетрясениями, вулканической деятельностью и т.п.) и техногенной деятельностью людей (строительство, подрезка склонов и т.п.). Наибольшее применение геофизические методы нашли при изучении оползневых процессов.
Оползни (медленные или внезапные перемещения горных пород по склонам под действием силы тяжести) являются проявлением нарушения устойчивости геологической среды и обусловлены определенной крутизной склонов, гор и прибрежных районов, литологией, обводненностью слагающих пород, наличием глин-плывунов. Оползни могут находиться в спокойном, стабилизированном состоянии, а сдвиги провоцируются как землетрясениями, так и искусственными вибрациями от промышленных предприятий, транспорта и т.п.
При изучении оползней перед геофизикой ставятся следующие основные задачи (см. 5.3.5):
· Выявление структуры и геологического строения тела оползня и окружающего горного массива.
· Изучение гидрогеологических условий как в теле оползня, так и в окружающем массиве.
· Оценка динамики (скорости движения) оползня, изменения напряженного состояния и определение ожидаемого времени подвижек.
Геофизические свойства горных пород тела оползня по сравнению с окружающим массивом отличаются увеличением естественных электрических потенциалов, понижением удельного электрического сопротивления и скоростей распространения упругих волн, увеличением их затухания, появлением термических аномалий и др. Поэтому основными методами решения 1-й и 2-й из названных задач являются методы естественного поля (ЕП), электромагнитные зондирования (ВЭЗ, ЗСБ) и профилирования (ЭП, ДИП), сейсморазведка методом преломленных волн (МПВ), прослушивание электрических и сейсмических шумов (электрическая и сейсмическая эмиссия). Выбор одного-трех из этих методов диктуется природными (геоморфологическими и геолого-гидрогеологическими) условиями. В стабилизированном состоянии оползня геофизические параметры, получаемые при интерпретации режимных наблюдений, сохраняются постоянными. При подготовке активизации оползня они начинают заметно изменяться, что объясняется увлажнением, ростом трещиноватости и напряженного состояния, техногенными причинами (подрезка склонов, строительство на оползнях и т.п.). Это и позволяет прогнозировать время начала скольжения и предсказывать катастрофические сходы оползней. За скоростью движения оползней (задача 3) можно следить, например, по сдвиганию магнитных реперов. Для этого в тело оползня помещают ряд вертикальных труб или стержней и проводят периодические магнитные съемки. По направлению максимального смещения изолиний и по величине смещений за известное время можно рассчитать направление движения и скорость оползня.
На рис. 6.1 приводится пример изучения скорости движения одного из оползней-потоков на Черноморском побережье Кавказа с помощью магнитных реперов, установленных на различных глубинах. Кроме того, здесь же был использован принцип наблюдений за " естественными " реперами, в качестве которых выбираются неоднородности литологического строения, обводненности, напряженного состояния оползневого тела. Эти неоднородности четко фиксируются аномалиями параметров, получаемых по данным метода естественного электрического поля (ЕП). При выполнении режимных наблюдений смещение центров таких аномалий указывает направление и скорость смещения оползневых масс. Можно видеть, что результаты за " естественными электрическими " реперами хорошо согласуются с данными магнитных реперов.
Рис. 6.1. Результаты комплексных геофизических и геодезических исследований на оползне: 1 - контур стенки отрыва; 2 - граница каньона; 3 - направление смещения магнитных реперов; 4-6 - эквипотенциалы естественного поля за три последовательных периода; 7 - направление смещения аномалии ЕП; 8 - направление смещений геодезических реперов |
2.1.3.Экогидрогеофизика.
Экогидрогеофизика предназначена для изучения карстово-суффозионных явлений, изменения динамики и химизма подземных вод. Карстовые и суффозионные явления связаны с растворением скальных (карбонатных, гипсоносных, соленосных пород) и вымыванием рыхлых пород подземными водами. Эти явления встречаются почти на одной трети территории суши, нередко изменяя поверхностные формы рельефа. Благоприятствуют развитию карста тектоническая трещиноватость пород и ее увеличение вследствие природно-техногенных причин, интенсивное движение подземных вод и изменения гидрогеологического режима. Например, за счет подземного водоснабжения и возникающего вследствие этого понижения уровня грунтовых вод проникающие в породы загрязненные атмосферные и поверхностные воды оказываются более агрессивными и увеличивают скорость выщелачивания. В результате образуются как поверхностные карстовые формы (карстовые воронки, котловины, колодцы, шахты и т.п.), так и глубинные (подземные полости, каналы, пещеры, гроты). Часто они заполнены водой или глинистыми продуктами выветривания пород (см. 5.3).
Вследствие карстово-суффозионных процессов и явлений уменьшается устойчивость геологической среды, что приводит к катастрофическим последствиям (просадки, провалы, деформации сооружений) (см. 3.3.5).
Для изучения устойчивости геологической среды перед геофизикой ставятся следующие задачи [Огильви А.А., 1990]:
· Выделение регионов, где встречаются растворимые породы, оценка литологии и мощности перекрывающих пород, самих карстующихся пород и глубины залегания базиса коррозии, т.е. поверхности скальных пород, ниже которой закарстованности нет.
· Изучение гидрогеологических условий: наличия водоносных и водоупорных пород, пластовых и трещинно-карстовых вод, их минерализации, динамики (скоростей движения и фильтрации).
· Выявление трещинно-карстовых зон, отдельных карстовых форм, полостей и т.п.
· Оценка динамики карстово-суффозионных процессов и устойчивости закарстованных территорий.
Возможность решения поставленных задач геофизическими методами определяется различием геофизических свойств закарстованных скальных пород по сравнению с теми же породами, но не затронутыми карстовыми процессами (ниже базиса коррозии), и перекрывающими, как правило, песчано-глинистыми породами. Закарстованные породы, несмотря на наличие в них полостей, заполненных воздухом, отличаются тем не менее пониженными удельными электрическими сопротивлениями и скоростями распространения упругих волн, существованием аномалий естественного электрического поля, повышением гамма-активности. Это объясняется наличием в них глинистых пород и трещинно-карстовых подземных вод, характеризующихся пониженными удельными электрическими сопротивлениями, а часто и скоростями упругих волн. Глинистые породы повышают гамма-активность, измеряемую при гамма-съемках, а трещиноватые - альфа-активность, измеряемую при эманационной (радоновой) съемке.
Решение первой задачи производится геофизическими методами, используемыми для картирования. В условиях круто слоистых сред применяются методы гравиразведки, магниторазведки, электромагнитного профилирования (методами естественного поля (ЕП), сопротивлений (ЭП), низкочастотного (НЧП) и высокочастотного (РВП)), гамма- и эманационные съемки. В условиях горизонтально и полого залегающих пород используются электромагнитные зондирования (вертикальные (ВЭЗ), частотные (ЧЗ) или становлением поля (ЗС) или другие), а также сейсморазведка методом преломленных (МПВ) и отраженных (МОВ) волн (см. 3.4).
Решение задач 3 и 4 проводится одиночными или режимными электромагнитными профилированиями, сейсморазведкой МПВ. С помощью скважинных геофизических исследований изучаются физические свойства горных пород вокруг скважин и между скважинами, определяются скорости движения и фильтрации подземных вод. Применение не менее двух методов, например одного электроразведочного и одного сейсмического, может дать более достоверное решение поставленных задач (см. 1.3).
В качестве примера эффективности скважинных геофизических исследований при изучении карстово-суффозионных процессов можно привести результаты режимных наблюдений на территории г.Москвы. На рис. 6.2 видно, что полости в закарстованных известняках, заполненные переотложенным глинистым материалом естественных электрического ( ) и радиоактивного ( ) полей, интервального времени ( ) по акустическим исследованиям и кажущегося сопротивления ( ) по данным метода сопротивлений, отличаются заметными аномалиями. Процесс вымывания глинистого заполнителя из полостей, возникающий под влиянием интенсивной откачки подземных вод, особенно хорошо можно проследить по изменению комплексного показателя , рассчитанного на основании суммирования контрастностей (отношений аномалий к нормальному полю) всех измеренных геофизических параметров: , где - число методов, входящих в комплекс. В данном примере = 4. График изменения значений , рассчитанный для серии наблюдений, выполненных в последовательные моменты времени с интервалом 3 месяца, дает возможность оценить время активизации суффозионного процесса.
Рис. 6.2. Результаты комплексных скважинных геофизических наблюдений при изучении карстово-суффозионного процесса: а - геологический разрез, б - каротажные диаграммы и графики изменения во времени комплексного показателя , в - режим средних значений комплексного показателя в изучаемом интервале глубин; 1 - пески, 2 - глины, 3 - закарстованные известняки, 4 - карстовые полости, 5 - уровень грунтовых вод |
Вопросы изучения динамики подземных вод, их химизма рассмотрены в 5.2. С ними тесно связаны проблемы истощения подземных вод и их загрязнения, подтопления городов, промышленных объектов, сельскохозяйственных земель (заболачивание), вторичное засоление мелиорируемых земель и др. Особенности решения этих проблем сводятся к периодическим повторениям геофизических съемок, сопоставлению с результатами опытных гидрогеологических наблюдений, получению совместных гидрогеофизических рекомендаций.
Экокриология.
Криогенные (мерзлотно-геологические) процессы проявляются в районах распространения многолетнемерзлых пород и замерзшей воды в порах и трещинах пород. Изучение строения геологического разреза в условиях криолитозоны сводится к определению мощности деятельного слоя, который в летний период оттаивает на 1-2 м, и надмерзлотных вод; изучению строения и мощности мерзлых пород, наличия в них и под ними межмерзлотных и подмерзлотных вод; картированию поверхностных талых пород; выявлению зон термокарста, бугров пучения, наледей, зон течения мерзлых пород на склонах (солифлюкция) и каменных потоков (курумы) и других неблагоприятных криогенных процессов (см. 5.4). Для изучения этих явлений широко используются геофизические методы. Важную роль с точки зрения экологии играют периодические повторения геофизических съемок, т.е. организация экомониторинга криогенных процессов, особенно в промышленно освоенных районах.
Под воздействием инженерно-технических сооружений в районах распространения многолетнемерзлых горных пород тепловой режим постепенно нарушается, что при приближении температур к 0 С ведет к деградации мерзлоты и протаиванию пород. По геологической устойчивости массивов горных пород мерзлые породы близки к скальным, а талые - к рыхлым. Как отмечалось выше (см. 5.4), одни и те же горные породы в мерзлом и талом состоянии различаются в 1,5-5 раз по скоростям распространения упругих волн и в 2-1000 раз по удельным электрическим сопротивлениям. В мерзлых породах эти параметры выше, чем в талых. Поэтому основными методами экомониторинга многолетнемерзлых горных пород на объектах промышленного и гражданского строительства являются сейсморазведка (чаще методом преломленных волн) и электромагнитные зондирования (чаще вертикальные электрические, частотные или радиолокационные), выполняемые в режиме периодических повторений. Обязательной является и термометрия (см. 5.4).