Митохондриальный и хлоропластный
Генетические коды
Помимо генетического кода, который содержится в ядерной ДНК, существует генетический код, содержащийся в ДНК мито-хондрий животных и человека, а также в ДНК хлоропластов растений. В митохондриях и хлоропластах помимо ДНК существуют и другие структуры, которые в совокупности с ДНК образуют самостоятельный аппарат синтеза белков. Размеры митохондриальных рибосом очень варьируют. В частности, размеры митохондриальных рибосом человека составляют 60 S.
Для митохондриального генетического кода характерны те же структуры и свойства и те же механизмы транскрипции и трансляции, что и в случае ядерного генетического кода. Однако известны и отличия. В митохондриальной ДНК все нуклеотиды входят в состав кодонов, кодирующих либо белки, либо рРНК и тРНК. Для трансляции используется только 22 тРНК (в отличие от 31 тРНК в ядерном коде и 30 тРНК в хлоропластном коде), причем отдельные молекулы тРНК могут узнавать любое основание, находящееся в кодоне в третьем положении. Митохондриальная ДНК человека и других млекопитающих содержит 64 кодона, из которых 4 являются стоп-кодонами.
Известно содержание антикодонов всех 22 тРНК (табл. 21). Каждый антикодон в случае митохондриального генетического кода способен спариваться с несколькими кодонами мРНК. Например, антикодон УАГ спаривается с кодонами ЦУУ, ЦУЦ, ЦУА и ЦУТ, кодирующими лейцин. 22 антикодона тРНК спариваются с 60 кодонами иРНК. Установлено, что митохондриальные тРНК подвержены «редактированию» (модификации транспорта тРНК) путем полиаденилирования, в результате чего создаются антикодоны терминации.
Таблица 21
Антикодоны в митохондриальном генетическом
коде млекопитающих*
ГАА | Фенилаланин | ГУА | тирозин |
УАА | Лейцин | ГУГ | гистидин |
УАГ | Лейцин | УУГ | глютамин |
ГАУ | Изолейцин | ГУУ | аспарагин |
ЦАУ | Метионин | УУУ | лизин |
УАЦ | Валин | ГУЦ | аспарагиновая кислота |
УГА | Серии | УУЦ | глютаминовая кислота |
УГГ | Пролин | ГЦА | цистеин |
УГУ | Треонин | УЦА | триптофан |
УГЦ | Аланин | УЦГ | аргинин |
ГЦУ | серии | ||
УЦЦ | глицин |
* Антикодон ГАА спаривается с кодоном УУУ и УУЦ, антикодон УАА — с кодонами УУА и УУГ, антикодон УАГ — с кодонами ЦУУ, ЦУЦ, ЦУА и ЦУГ и т. д., за исключением того, что антикодон ЦАУ спаривается с кодонами АУА и АУГ
Генетический код ДНК и белоксинтезирующий аппарат хлоропластов несколько отличны от кода и белоксинтезирующего аппарата митохондрий.
Прежде всего хлоропластный код кодирует намного больше белков по сравнению с митохондриальным кодом. Рибосомы хлоро-палстов сходны с рибосомами кишечной палочки, а синтез полипептидной цепи начинается с N-формилметионина (как и у бактерий).
Универсальность и происхождение
Генетического кода
Генетический код ядерной ДНК универсален, т. к. он одинаков у всех живых существ, т. е. у всех живых существ используются одинаковые наборы кодонов. Признание универсального характера генетического кода является выдающимся современным доказательством единства происхождения органических форм (см. главы XIV, XV и XVI).
С тех пор как были определены основные черты структуры генетического кода, стали формулировать также гипотезы относительно его эволюции, причем к настоящему времени известно несколько таких гипотез. В соответствии с одной гипотезой первоначальный код (в примитивной клетке) состоял из очень большого количества двусмысленных кодонов, что исключало правильную трансляцию генетической информации. Поэтому в процессе эволюции организмов развитие генетического кода шло по линии сокращения ошибок в трансляции, что привело к коду в его современном виде. Напротив, по другой гипотезе код возник в результате сведения до минимума летальных эффектов мутации в процессе эволюции, причем селективное давление вело к устранению бессмысленных кодонов и к ограничению частоты мутаций в кодо-нах, изменения которых не сопровождались изменениями в последовательности аминокислот, либо сопровождались заменами лишь одной аминокислоты на другую, но функционально связанную. Развившись в процессе эволюции, код однажды стал «замороженным», т. е. таким, каким мы видим его сейчас.
В соответствии с третьей гипотезой предполагают, что ранний архетиповой код был дуплетным, состоя из 16 кодонов-дуплетов. Каждый из 15 дуплетов кодировал каждую из 15 аминокислот, из которых, как предполагают, состояли белки примитивной клетки, тогда как оставшийся свободным 60-й дуплет обеспечивал свободное пространство («брешь») между генами. В связи с установлением каталитической способности РНК и высокой концентрации РНК в рибосомах предполагают, что в примитивных клетках молекулы тРНК сами катализировали свое связывание с аминокислотами, а роль рибосом выполняли первые рРНК. Триплетный код возник тогда, когда в процессе эволюции образовались остальные пять аминокислот, причем его возникновение связано с добавлением третьего основания в каждый кодон.
Предполагают, что современный генетический код является результатом длительной эволюции примитивного кода, кодировавшего лишь несколько аминокислот, притом только несколькими триплетами, составленными из азотистых оснований двух типов.
В последующем эволюция кода заключалась в уменьшении количества бессмысленных триплетов и увеличении количества смысловых. Это привело к тому, что большинство триплетов стало «читаться». Завершающая стадия в эволюции кода была связана с увеличением количества аминокислот, подверженных «опознанию» соответствующими нуклеотидами (триплетами), а также с синтезом клетками соответствующих тРНК и активирующих ферментов. Когда количество и структура белков стали такими, что уже ни одна новая аминокислота не могла улучшить селективные преимущества организмов, код «заморозился» в его современном виде.
Что касается митохондриального кода, то его считают более примитивным по сравнению с ядерным. Предполагают, что, например, антикодон УАА в современном митохондриальном коде мог быть также и антикодоном архетипового кода для кодонов, в которых первые два основания являются У, а третье могло быть У, Ц, А или Г. Но можно предполагать, что митохондриальный код возник в результате упрощения бактериального кода, если признать происхождение митохондрий от бактерий. Оценивая особенности белкового синтеза, контролируемого митохондриальным генетическим кодом в сравнении о хлоропластным, остается неясным, почему хло-ропластный генетический код кодирует намного больше белков по сравнению с митохондриальным генетическим кодом.
Как видно, современные взгляды на происхождение и эволюцию генетического кода весьма противоречивы, ибо пока нет еще экспериментальных данных, которые можно было бы использовать для достаточного обоснования той или иной гипотезы.