Основные свойства прокариотических и эукариотических клеток

Свойство Прокариоты Эукариоты
Капсула имеется у отдельных видов отсутствует
Клеточная стенка имеется имеется в клетках растений, отсутствует в клетках животных
Плазматическая мембрана имеется имеется
Ядерная мембрана отсутствует имеется
Количество хромосом одна или две от нескольких до многих
Количество групп сцепления одна или две от нескольких до многих
Химический состав хромосом ДНК нуклеопротеид
Митохондрии отсутствуют имеются
Деление прямое непрямое (митоз)

В настоящее время различают прокариотические и эукариоти-ческие клетки. Прокариотическими являются одноклеточные организмы из мира растений, представленные в основном бактериями. Напротив, эукариотическими являются в основном одноклеточные организмы животной природы, а также клетки большинства (если не всех) многоклеточных животных и растений. Как прокариотические, так и эукариотические клетки характеризуются значительным структурно-функциональным разнообразием, что определяет между ними существенные различия (табл. 2).

Методы изучения клеток

Всеобъемлющим современным подходом к изучению клеток является системно-структурный подход.

Для изучения клеток используют микроскопическую технику в виде световой, фазово-контрастной, ультрафиолетовой, люминесцентной и электронной микроскопии. Последняя используется в сочетании с техникой ультратонких срезов. С целью получения трехмерных изображений клеток используют сканирующие электронные микроскопы. Для документации поведения живых клеток используют замедленную киносъемку.

В цитологических исследованиях очень эффективны цитохи-мические методы, основанные на том, что определенные реактивы (краски) избирательно окрашивают химические вещества цитоплазмы, а также ауторадиография, которая заключается во введении в клетки радиоактивных изотопов фосфора (32Р), углерода (14С) и водорода (3H) с последующим обнаружением их клеточной локализации с помощью фотоэмульсий.

Для выделения клеточных компонентов используют дифференциальное центрифугирование, а для разделения биологических молекул — хроматографию и электрофорез. Рентгеноструктурный анализ позволяет определять пространственное расположение молекул различных веществ, расстояние между отдельными молекулами, объем, форму и другие свойства молекул. Метод ядерного магнитного резонанса позволяет исследования химической природы вещества.

Для изучения клеток используют также биохимические, генетические и иммунологические методы в сочетании с культивированием клеток на искусственных питательных средах. В последние годы в исследованиях клеток широко используют методы генетической инженерии.

Структурно-функциональная организация

Прокариотических клеток

Для прокариотических клеток характерна довольно простая структурно-функциональная организация. Вероятно, среди прока-риотов наиболее примитивно устроены микоплазмы, которые известны тем, что являются паразитами растений или возбудителями некоторых респираторных заболеваний человека и домашних животных. Считают также, что около '/д лабораторных культур соматических клеток заражены этими организмами.

Микоплазменные клетки имеют овальную форму, а их размеры составляют около 0,1-0,25 нм в диаметре (рис. 43). Для них характерно наличие тонкой наружной плазматической мембраны (толщина — около 8 нм), которая окружает цитоплазму, содержащую молекулу ДНК, достаточную для кодирования около 800 разных белков, РНК разных типов, рибосом диаметром порядка 20 нм. В их цитоплазме содержатся различные включения в виде белков, гранул ли-пидов и других соединений. Из-за недостаточной жесткости клеточной мембраны микоплазмы проходят через бактериальные фильтры.

Более сложными Прокариотическими клетками являются бактерии, цианобактерии и одноклеточные водоросли.

Основные свойства прокариотических и эукариотических клеток - student2.ru Как отмечено в § 4, бактерии имеют разную форму, начиная от палочек и заканчивая округлыми формами микроскопических размеров. Размеры одиночной клетки Е. coli (рис. 44) составляют 1— 3 мкм в длину и 0,5—0,8 мкм в диаметре, объем — около 1 нм8, а масса равна Ю-12 г.

Одиночная клетка Е. coli окружена трехслойной клеточной оболочкой толщиной порядка 40 нм, представляющей собой «мешок» или «конверт», в котором заключено клеточное содержимое в виде, примерно, 2´10-18 г белка, 6´10-16 г ДНК и 2´10-14 г РНК (в основном рибосомной РНК). В бактериальной клетке синтезируется около 2000 разных белков, большинство которых содержится в цитоплазме. Концентрация одних белков составляет 10-8 М, тогда как других — порядка 2´10-4 М (от 10 до 200 000 молекул на клетку).

«Конверт» состоит из трех частей (рис. 45), из которых две части представлены наружным и внутренним слоями, являющимися наружной и внутренней мембранами (соответственно) и построенными в основном из липополисахаридов. Внешняя поверхность наружной мембраны в основном состоит из липополисахаридов, которые прикрепляются к располагающимся там же липидам. В состав наружной мембраны входят также белки. Внутренняя мембрана, называемая цитоплазматической, состоит из многих белков, включенных в двойной фосфолипидный слой. Иногда мембраны образуют складки, называемые мезосомами. Предполагают, что они принимают участие в репликации бактериальной клетки.

Третьей частью «конверта» является пептидогликановый слой, который непосредственно представляет собой клеточную стенку толщиной порядка 40 нм, лежащую между наружной и внутренней ци-топлазматическими мембранами. Определяя форму бактериальной клетки, пептидогликановый слой в химическом плане является одиночной сложной молекулой, содержащей полисахаридные цепи, связанные с короткими пептидами. Внешняя мембрана прикреплена к пептидогликановому слою большим количеством (10е) молекул ли-попротеида, белковый конец которых ковалентно прикреплен к ди-аминопимелиновой кислоте пептидогликана, тогда как их липид-ный конец «спрятан» во внешней мембране. На долю мембран и клеточной стенки приходится около 20% всего клеточного белка.

Основные свойства прокариотических и эукариотических клеток - student2.ru

Основные свойства прокариотических и эукариотических клеток - student2.ru

Пространство между наружной и внутренней мембраной, содержащее пептидогликановый слой, носит название периплазма-тического пространства. Растворение клеточных стенок сопровождается образованием так называемых протопластов, сохраняющих лишь внутреннюю мембрану. Эти структуры широко используют в экспериментальной работе.

На поверхности клеточной стенки у бактерий многих видов могут быть жгутики или жгутики и пили, а снаружи от клеточной стенки может иметься также капсула, как, например, у пневмококков. Эти структуры имеют диагностическое значение.

Основное вещество-бактерий представлено цитоплазмой, являющейся раствором белка, концентрация которого составляет 200 мг/мл. В цитоплазме бактерий имеется ядерная область, которую из-за отсутствия мембраны называют нуклеотидом. В этой области обнаруживают волокна диаметром 3—5 нм, представляющие собой скрученные двойные цепи одиночной кольцевой молекулы ДНК. Эти цепи ДНК рассматривают в качестве одиночной хромосомы. В большинстве случаев у бактерий действительно обнаруживают по одной кольцевой хромосоме, однако у бактерий ряда видов найдено по две кольцевых хромосомы (Rhodobacter sphaeroides, Brucella melitensis, Leptospira interrogans, Pseudomonas cepaeia), различающихся по размерам (одна из них является большой, другая малой), у Agrobacterium tumefaciens одна из двух хромосом является линейной.

Секвенирование ДНК ряда прокариотических организмов показало, что их геномы, вопреки простоте, характеризуются уникальностью. Например, Mycoplasma gallinarum обладает геномом, размер которого составляет 580 килооснований, тогда как Haemophilus influencae обладает геномом в 1,8 мегаоснований, но геномы этих прокариотов функционально различны. У Н. influencae количество кодирующих районов (генов) составляет 1743, из которых 1007 кодируют аминокислотный и липидный метаболизмы, биосинтез кофакторов и клеточного «конверта», синтез нуклеотидов и белков, репликацию и транскрипцию ДНК, продукцию энергии и транспорт веществ, причем на контроль метаболизма приходится 10% ДНК, транскрипции и трансляции — 17% ДНК, транспорта веществ — 12% ДНК и синтеза белков клеточного «конверта» — 8% ДНК. В противоположность Н. influencae, у которой аминокислотный биосинтез контролируется 68 генами, у М. galliriatum аминокислотный биосинтез контролируется всего лишь одним геном. Микоплазмы этого вида не имеют генов для цитохромов и ферментов цикла три-карбоновых кислот. Но они обладают рядом генов, которые кодируют адгезин, позволяющий им прекрепляться к соматическим клеткам животных и человека, в организмах которых они паразитируют.

В цитоплазме бактерий содержатся также рибосомы, которых очень много (по одним подсчетам около 10 000 на клетку, по другим — 15 000-30 000). Масса каждой рибосомы Е. coli составляет 2 х 7 х 10е дальтон, а состав определяется 65% рибосомной РНК и 35% белками. Белковая часть представлена примерно 50 различными белками. В цитоплазме содержатся различные включения в виде гранул (капель) жира, гликогена, липидов, серы. У В. megaterium в цитоплазме содержится очень много гранул поли-р-оксимальной кислоты. В бактериальных клетках обнаруживают также гранулы высокополимерной фосфорной кислоты (метахроматические гранулы).

Сходным образом организованы и одноклеточные водоросли.

Наши рекомендации