Микробиология в пищевой промышленности.

ЛЕКЦИИ

по дисциплина МИКРОБИОЛОГИЯ

ЛЕКЦИЯ №1.

Микробиология в пищевой промышленности.

Эукариоты. Вирусы.

Вопросы:

1.Морфология, строение, размножение эукариотных микроорганизмов.

2.Классификация грибов.

3.Строение, размножение, форма клеток и классификация дрожжей.

4.Строение, размножение и классификация вирусов. Бактериофаги.

1. Морфология, строение, размножение грибов. Низшими эукариотными одноклеточными и мицелиальными организмами являются грибы, которые относятся к царству Mycota. Разрастаясь на поверхности или в глубине субстрата, грибы соприкасаются с ним клеточной оболочкой, через которую они выделяют во внешнюю среду ферменты и поглощают питательные вещества абсорбтивным путем. Грибы, являясь более древними организмами, чем растения и животные, имеют признаки, характерные для одного и другого царства.

Признаки грибов, сходные с растениями: полярность клетки, неограниченный верхушечный рост, наличие ригидной клеточной стенки, вакуолей, поперечных перегородок, способность к синтезу витаминов. Общие с животными признаки: отсутствие хлорофилла, гетеротрофные тип питания, наличие в клеточной стенке хитина, а не целлюлозы, образование мочевины в процессе азотного обмена, синтез запасных углеводов в форме гликогена, сходная первичная структура дыхательных ферментов и транспортных РНК.

Специфические признаки и свойства, характерные только для членов царства Mycota: мицелиальная структура вегетативного тела, сложные ядерные циклы, многоядерность. Основная вегетативная структура грибов – гифа, совокупность гиф образует мицелий, или грибницу. Гифы имеют нитевидное строение и, переплетаясь, образуют ложную ткань, из которой строится основа плодовых тел. Гифы бывают без перегородок или могут иметь поперечные перегородки - септы с простыми или сложными отверстиями – порами. Грибы с несептированными гифами называют низшими, с септированными – высшими. Среди септированных есть и одноклеточные формы – дрожжи, и многоклеточные.

Грибы размножаются бесполым (конидиями и спорами) и половым путем (образование различных половых структур – зигоспор, сумок или базидий). Грибы относятся к плейоморфным организмам, то есть один вид может иметь несколько стадий развития, которые различаются морфологически, функционально и проходят в разных местообитаниях или со сменой хозяев. Бесполое размножение осуществляется многими путями. Грибница может вырасти из любого обрывка мицелия; воздушные гифы мицелия могут рассыпаться на отдельные клетки, которые затем прорастают и образуют каждая новый мицелий.

Распространен и бесполый способ размножения грибов – спорообразование, когда споры образуются в специальных вздутиях на концах воздушных гиф, в этом случае они называются эндоспорами. Споры могут образовываться и наружным способом на особых гифах - конидиеносцах. Эти споры являются экзоспорами и называются конидиями. При созревании оболочка разрывается, споры высыпаются и в благоприятных условиях прорастают в новый мицелий.

При половом размножении грибов перед образованием спор сливаются две клетки, имеющие в ядре одинарный набор хромосом – гаплоидные клетки, образуя диплоидную клетку. Далее у разных классов грибов процесс идет по-разному. У одних образуется клетка, покрытая толстой оболочкой – зигота, которая после периода покоя прорастает в новый мицелий. У других образуется многоклеточное плодовое тело, внутри него развиваются сумки со спорами, которые после созревания высыпаются и прорастают в мицелий.

Грибы распространены повсеместно в природе и там, где есть хотя бы следы органических веществ. Все грибы – аэробные организмы, за исключением обитателей рубца жвачных животных. Среди грибов есть паразиты, симбиотрофы, хищники, сапрофиты, возбудители опасных болезней человека, животных и растений. Они могут быть причиной пищевых отравлений. Грибы синтезируют и выделяют во внешнюю среду разнообразные гидролитические ферменты, расщепляющие любые органические субстраты.

2. Классификация грибов. Грибы делят на 5 классов, в основном по особенностям размножения.

1 класс архимицеты (Archimycetes) объединяет наиболее примитивные организмы, у которых мицелия нет или он слабо развит. Бесполое размножение осуществляется подвижными зооспорами. Большинство архимицетов являются внутриклеточными паразитами растений. Примером может быть гриб, вызывающий заболевание капусты «черная ножка» или рак картофеля.

2 классфикомицеты (Phycomycetes) объединяет грибы с хорошо развитым мицелием, почти у всех организмов несептированным. Размножаются половым и бесполым путем. Среди представителей этого класса широко распространены мукоровые грибы или головчатая плесень (род Mucor), обитающие в почве и на различных пищевых продуктах. Мукор имеет хорошо развитый мицелий. От воздушного мицелия отходят плодоносящие гифы-спорангиеносцы, заканчивающиеся шаровидным спорангием¸ в котором развиваются тысячи спор. Плесень имеет вид серовато-белого, очень густого пушка. При просмотре головчатой плесени под микроскопом или под лупой в чашке Петри обнаруживаются спорангии, возвышающиеся над общей массой мицелия в виде головок. Многие из грибов данного класса способны к спиртовому или окислительному брожению, некоторые используются в промышленности для производства органических кислот и спирта.

3 классаскомицеты (Ascomycetes) - или сумчатые грибы. В этом классе имеются паразиты культурных растений, возбудители порчи пищевых продуктов и грибы, используемые в промышленности. Мицелий аскомицетов многоклеточный, бесполое размножение осуществляется конидиями, половое – спорами, которые образуются в сумках (асках). К аскомицетам относятся распространенные плесневые грибы родов Aspergillus и Penicillium.

Aspergillus – широко распространенная булавовидная плесень, в отличие от других многоклеточных плесеней имеет несептированный, очень длинный конидиеносец, который в верхней части заканчивается булавовидным утолщением. От него радиально во все стороны отходят клеточные выросты – стеригмы. От стеригм отшнуровываются конидии, которые располагаются цепочками. Под микроскопом конидиеносец со стеригмами и конидиями напоминает вид садовойй лейки в момент. Когда из нее выливается вода. Поэтому плесень этого рода называют леечной. Молодые конидии имеют светло-зеленую окраску, затем они темнеют и становятся серо-зелеными и серо-бурыми. Aspergillus часто развивается в сырых помещениях завода, в ёмкостях и таре на остатках продукта.

Penicillium – зеленая кистевидная плесень, в начале развития окраска белая, затем серо-зеленая и, наконец, серо-бурая. Плесени имеют многоклеточный мицелийи конидиеносец. На конце конидиеносца образуется по нескольку клеточных выростов (стеригм), а на них круглые одноклет очные конидии. Плодовое тело (конидиеносец со стеригмами и конидиями) при среднем увеличении микроскопа напоминает кисть руки. Плесень эта распространена повсюду и при наличии влаги появляется на всех пищевых продуктах. Отдельные виды применяются для изготовления лечебного препарата – пенициллина и плесневых сыров.

4 классбазидиомицеты (Basidiomycetes) объединяет грибы с ветвистым септированным мицелием, размножающиеся половым и бесполым путем. По строению базидий грибы разделяют на 2 группы:

1. Имеющие одноклеточные базидии, к этой группе принадлежат шляпочные грибы (в пищу употребляют плодовые тела), трутовики.

2. Имеющие многоклеточные базидии – паразитические грибы, поражающие растения. Головневые грибы поражают зерновые культуры, вызывая головню; ржавчинные грибы поражают различные культурные растения.

5 класс грибы несовершенные (дейтеромицеты, Fungi imperfecti) – многоклеточные грибы, которые размножаются только конидиями (бесполое размножение). Многие из них вызывают плесневение пищевых продуктов, некоторые являются паразитами культур. Молочная плесень (Oidium lactis) в виде бархатистой пленки встречается на поверхности квашеных овощей и кисломолочных продуктов, прессованных дрожжах, масле, сыре. Oidium lactis не имеет плодоношения. Несовершенные конидии (оидии) образуются в результате распада концевых нитей воздушного мицелия и представляют собой прямоугольные или овальные клетки, образующие белый пигмент.

3. Дрожжи – одноклеточные грибы, не образующие мицелия, в основном относящиеся к классу сумчатых грибов – аскомицетов, но есть отдельные представители в классе базидиомицетов. В природе дрожжи распространены повсеместно, где есть сахаросодержащие жидкости (на плодах, ягодах, листьях растений). Дрожжи имеют огромное значение в пищевой промышленности, так как они способны сбраживать сахар в спирт и углекислый газ.

Форма дрожжевых клеток чаще всего овальная, округлая или эллиптическая. Размножаться они могут бесполым, так и половым путем. Бесполое (вегетативное) размножение осуществляется почкованием, при этом на материнской клетке появляется бугорок – почка, которая постепенно растет и, наконец, отделяется при помощи перетяжки – отшнуровывается. В дочернюю клетку переходит часть ядра, цитоплазмы и других клеточных структур.

При половом размножении первой стадией процесса является образование спор в клетке. При этом ядро делится на части, соответствующие количеству будущих аскоспор (от 2 до 8 шт.), каждая часть окружается цитоплазмой и покрывается оболочкой. При достижении зрелости они высыпаются из сумки и могут размножаться почкованием, образуя ослабленное гаплоидное поколение. При слиянии 2-х гаплоидных аскоспор образуется диплоидная зигота, которая, прорастая, дает поколение жизнеспособных диплоидных клеток. Это свойство дрожжей используют при искусственной гибридизации в промышленности. При этом преимущественно разводят диплоидные или полиплоидные расы дрожжей.

В основу классификации дрожжей положены способы размножения и ряд физиологических признаков. Порядок одноклеточные грибы (дрожжи) включает 3 семейства:

1. Сахаромицетациа (Saccharomycetaceae) – клетки размножаются почкованием. К этому семейству относится род Saccharomyces, имеющий наибольшее техническое значение и еще 16 родов. Различие между родами состоит в форме спор и способе их образования и прорастания.

2. Шизосахаромицетациа (Scizosaccharomycetaceae) – клетки размножаются делением, все аэробы.

3. Сахаромикодацеа (Sacchoromycodacea) – клетки размножаются почкованием, которое заканчивается делением.

Физиология микроорганизмов

Вопросы:

1.Химический состав клеток микроорганизмов.

2.Способы питания и поступления в клетку различных веществ

3.Типы питания и дыхания микроорганизмов.

4.Рост и развитие микроорганизмов.

1. Химический состав микроорганизмов. Вегетативные клетки микроорганизмов содержат до 85% воды. Сухое вещество тела состоит в основном из органических соединений и небольшого количества минеральных веществ. Среди органических веществ клетки на долю белков у бактерий приходится 50 – 80% от массы сухих веществ (у дрожжей 40 – 60%, у грибов 15 – 40%). Содержание жиров и липидов в клетках микроорганизмов составляет 3 – 7% (у дрожжей до 40% от массы сухих веществ).

Около 15% составляют минеральные вещества. В дрожжевой клетке 50% от всех неорганических соединений составляет фосфорная кислота и 30% - калий, остальное количество процентов от массы сухих веществ составляют углеводы. В дрожжевой клетке они представлениы в основном гликогеном, в клетках других микроорганизмов они встречаются в виде пентоз, гексоз, декстринов, клетчатки и гликогена. В клетках дрожжей содержатся витамины группы В и провитамин Д.

Генетика микроорганизмов

Вопросы:

1.Наследственные факторы микроорганизмов.

2.Механизмы, вызывающие изменение генетической информации.

3.Практическое использование достижений генетики микроорганизмов

1. Наследственные факторы микроорганизмов. В клетках эукариот местом нахождения генетического материала являются ядра, а у прокариот – нуклеоиды. Генетический материал представлен ДНК. Бактериальные клетки ДНК имеют форму нитей, замкнутых в виде кольца, - бактериальная хромосома. Хромосома имеет отдельные участки (фрагменты молекулы ДНК), которые называются генами. Ген – основной фактор, отвечающий за наследственные свойства микроорганизмов. Кроме того, конкретные признаки микроорганизмов обуславливают отдельные ферменты. Гены, которые несут информацию о синтезируемых микроорганизмами ферментах – структурные гены.

Микроорганизмы содержат генетический материал не только в хромосоме, но и в плазмидах, расположенных в цитоплазме. Плазмиды представляют собой молекулы ДНК. Клетка микроорганизма составляет генотип данного микроорганизма. Проявление наследуемых морфологических признаков и физиологических процессов называется фенотипом.

Изменения наследственных признаков, возникающие под влиянием внешней среды, - модификации. Модификации существуют до тех пор, пока действует вызывающий их фактор среды, и не наследуются организмами. Изменения генотипа называются мутациями, они происходят случайно и являются наследственно закрепленными признаками.

2. Механизмы, вызывающие изменения генетической информации. Мутации происходят, если в ДНК химически изменяется или выпадает нуклеотид или в ДНК включается лишний нуклеотид. Различают генные и хромосомные мутации. Генные мутации затрагивают только 1 ген, а хромосомные распространяются на несколько генов.

Генные мутации:

· точковые мутации – мутации, при которых происходят химическое изменение одного нуклеотида. Среди них различают несколько групп:

1) транзиции – мутации, когда пурин одной из цепей ДНК замещается другим пурином, а пиримидин комплиментарной цепи другим пиримидином.

2) трансверсии – мутации, когда происходит замена пурина пиримидином.

3) мутации со сдвигом рамки – изменения, когда происходит вставка лишнего нуклеотида.

В ряде случаев точковые мутации могут возвращаться к исходной дикой форме в результате процесса обратной мутации – реверсии.

Хромосомные мутации связаны с более крупными перестройками фрагментов ДНК. Среди них выделяются:

1) делеция, которая проявляется в результате выпадения меньшего или большего числа нуклеотидов;

2) инверсия, которая проявляется в виде поворота участка ДНК на 180о;

3) дупликация – повторение какого-либо фрагмента ДНК;

Мутации вызывают обычно химические и физические агенты, такие как рентгеновское, ультрафиолетовое излучения, гамма-лучи, соединения тяжелых металлов, перекиси, минеральные масла, алкилирующие соединения, аналоги иприта и другие. Клетки бактерий обладают специальными системами, восстанавливающими поврежденные ДНК. Восстановления осуществляются ферментами, которые находятся под контролем специальных генов.

У микроорганизмов имеются механизмы, способствующие возникновению в потомстве резко измененнной наследственности. Эти механизмы заключаются в немедленной перестановке генов (рекомбинации), принадлежащих близкородственным, но генетически различным организмам. У эукариот это образование индивидуумов происходит в результате полового процесса. У прокариот известно 3 процесса рекомбинации генов:

1) трансформация – перенос генов, при котором часть ДНК клетки-донора может проникать в родственную бактериальную клетку. ДНК получается экстрагированием или при естественном растворении клеток.

2) коньюгация – процесс, при котором сблизившиеся родительские клетки соединяются при помощи коньюгационных мостиков, через которые происходит обмен генетическим материалом.

3) трансдукция – перенос бактериального материала от одной клетки к другой при участии бактериофага.

3. Практическое использование достижений генетики микроорганизмов.Развитие генетики, открывшей методы получения наследственно измененных форм микроорганизмов, расширило возможности ис­пользования микроорганизмов в сельскохозяйственном и промыш­ленном производстве, а также в медицине. Основной из этих методов — это индуцированное получение мутантов воздействием различными мутагенами (излучениями и химическими веществами) на дикие, существующие в природе культуры микроорганизмов. Таким методом удается создать мутанты, которые дают в десятки и сотни раз большее количество ценных продуктов (антибиотиков, ферментов, витаминов, аминокислот и т. д.) по сравнению с дики­ми формами микроорганизмов.

Процесс получения высокопродуктивных штаммов микроорга­низмов состоит из многих этапов. На культуру микроорганизма воздействуют различными мутагенными факторами с последую­щим отбором наиболее продуктивного штамма. Этот мутантный штамм может подвергнуться дальнейшему воздействию мутагенов и дальнейшему отбору еще более продуктивных мутантов. Часто из тысячи бесполезных мутантов отбирают только один высоко­продуктивный штамм. В последние годы методом радиационного и химического мутагенеза микроорганизмов получено большое число промышленных штаммов микроорганизмов — продуцентов анти­биотиков, ферментов, витаминов, ценных пищевых аминокислот, ростовых и других веществ.

Особенно широкие перспективы переделки наследственной при­роды организмов сулит развитие генной, или генетической, инже­нерии. Это раздел молекулярной генетики, который разрабатывает методы создания новых генетических структур, несущих заданную информацию, и способов их переноса в клетки прокариот и эукариот.

Полученные методом генной инженерии новые генетические молекулы представляют собой рекомбинантные ДНК, включающие два компонента — вектор (переносчик) и клонируемую «чужерод­ную» ДНК. Так как переносчик должен обладать свойствами репликона и обусловливать репликацию вновь созданной рекомбинантной ДНК, то в качестве вектора обычно используют такие репликоны, как плазмиды, умеренные фаги и вирусы животных. Все эти переносчики имеют циркулярно замкнутую структуру ДНК - Клонируемая ДНК — это фрагмент ДНК, который несет необходимый ген (или гены), контролирующий образование нуж­ного вещества.

Имеются различные приемы получения рекомбинантных моле­кул ДНК - Наиболее простой из них сводится к обработке изолиро­ванных молекул ДНК-вектора и ДНК, несущей необходимый ген, ферментами рестриктазами (эндонуклеазы рестрикции), расщепля­ющими взятые молекулы ДНК в строго определенном месте с образованием однонитчатых комплементарных друг другу концов, так называемых липких концов. Это первый этап получения реком­бинантных ДНК — «разрезание» молекул ДНК с помощью эндонуклеаз рестрикции. Второй этап заключается в обработке полученных линейных молекул ДНК ферментом полинуклеотидлигазой, которая «сшивает» две разные молекулы в одну рекомби-нантную ДНК. На третьем этапе рекомбинантные молекулы вво­дят в клетки тех или иных бактерий методом трансформации. На завершающем, четвертом, этапе проводят клонирование трансфор­мированных клеток.

В настоящее время методом генной инженерии получены рекомбинантные молекулы ДНК, несущие информацию для образо­вания таких важных веществ, как интерферон, инсулин, гормон роста человека и другие в клетках кишечной палочки (Е. coli). По-видимому, методом генной инженерии можно будет создать и такие бактерии, которые, потеряв свою болезнетворность, помогут выработать иммунитет против многих инфекционных болезней жи­вотных и человека. В промышленности, благодаря использованию генной инженерии, появятся высокопродуктивные микроорганиз­мы, создающие белки, ферменты, витамины, антибиотики, росто­вые вещества и другие нужные продукты.

Будут получены новые сорта растений и породы животных, устойчивые к заболеваниям и наделенные особенно выгодными для сельского хозяйства свойствами. Возможно, методом генной инженерии будут созданы растения, обладающие способностью к связыванию молекулярного азота ат­мосферы. Такие растения, вероятно, можно будет получить после введения в их геном генов от микроорганизмов, фиксирующих азот из воздуха.

Нет сомнения в том, что в связи с разработкой и совершенство­ванием методов генной инженерии, показавших возможность передачи не только естественных генов живых организмов, но и искусственно синтезированных, открываются блестящие перспекти­вы для научно-технического прогресса не только в медицине и про­мышленности, но и в сельскохозяйственном производстве.

ЛЕКЦИЯ №6

Процессы окисления.

Окисление происходит в условиях присутствия кислорода. Эти процессы связаны с дыханием микроорганизмов.

Окисление углеводородов. Углеводороды – стойкие соединения и окисляются лишь некоторыми микроорганизмами. Метановые бактерии окисляют метан:

Микробиология в пищевой промышленности. - student2.ru СН4 + 2 О2 СО2 + 2 Н2О

Некоторые бактерии аналогично окисляют углеводороды жирного ряда. Углеводороды, усваивающие микроорганизмы, последнее время используют для очистки водоемов от загрязнения нефтью и продуктов ее переработки.

Окисление жиров и высокомолекулярных жирных кислот. Эти соединения разлагаются бактериями, актиномицетами и другими грибами. Наиболее энергично разлагают жиры пигментные бактерии: Bacterium prodigiozum (красный пигмент), Pseudomonas fluorescens (зеленый пигмент). Они устойчивы к низким температурам, способны расщеплять жир на глицерин и жирные кислоты, жирные кислоты затем окисляют до углекислого газа и воды. В разложении жира и жирных кислот принимают участие также плесневые грибы из рода Aspergillus и Penicillium.

Окисление этилового спирта в уксусную кислоту (уксуснокислое брожение). В этом процессе принимают участие уксуснокислые бактерии, которые являются строгими аэробами и могут развиваться только на поверхности среды. Они, как правило, образуют пленку на поверхности; отличаются высокой устойчивостью к кислотам; оптимум рН 5- 6, но растут и на более кислых средах. Эти бактерии широко распространены в природе и постоянно встречаются на поверхности плодов, ягод, поэтому легко переходят в вино, пиво, квас и вызывают их скисание. Характерной особенностью уксуснокислых бактерий является то, что они превращают этиловый спирт в уксусную кислоту.

Микробиология в пищевой промышленности. - student2.ru СН3СН2ОН + О2 СН3СООН + Н2О

При производстве напитков и вин они наносят вред, так как они способствуют скисанию. Но в тоже время бактерии используются в производстве пищевого уксуса из вина и спирта. Эти же бактерии могут вызвать окисление сорбита, манита, глюкозы до глюконовой кислоты, окисление глицерина до диоксиацетона. Эти бактерии используются при производстве аскорбиновой кислоты и в ряде других производств.

Окисление углеводов плесневыми грибами. При этом образуются уксусная, молочная, лимонная, яблочная и другие органические кислоты, которые далее под действием плесневых грибов окисляются до углекислого газа и воды. Большое значение имеет использование плесневого гриба Aspergillus niger при производстве лимонной кислоты, он превращает около 60% глюкозы в лимонную кислоту. Процесс превращения углеводов в лимонную кислоту называется лимоннокислым брожением.

Окисление клетчатки и близких к ней соединений. Чаще всего этот процесс происходит в почве, возбудителями являются бактерии, актиномицеты и плесневые грибы. Первоначально клетчатка гидролизуется, затем окисляется с образованием высокомолекулярных органических кислот и простых оксикислот. В качестве промежуточных продуктов образуются растворимые сахара. Эти же микроорганизмы окисляют пентозаны, пектиновые вещества, лигнин до углекислого газа и воды.

В рубце жвачных животных обитают специфические облигатные анаэробные целлюлозоразлагающие бактерии. Они вызывают разложение целлюлозы до глюкозы и сбраживание ее с образованием органических кислот, спиртов, углекислого газа и воды.

ЛЕКЦИЯ 7

Превращение азотсодержащих соединений, соединений серы, фосфора и железа.

Вопросы:

1.Процессы аммонификации.

2.Процессы нитрификации и денитрификации.

3.Процессы фиксации атмосферного азота.

4.Превращение соединений серы, фосфора и железа

Стерилизация и дезинфекция.

Вопросы:

1.Виды стерилизации и ее применение.

2.Методы дезинфекции.

3.Классификация дезинфицирующих средств.

4.Методы обеззараживания воды.

1.Стерилизация.Стерилизация является одним из важнейших и необходимых приемов в микробиологической практике. Слово «стерилизация» в переводе с латинского означает обеспложивание. В практической работе под сте­рилизацией понимают методы, применяемые для уничтожения всех форм жизни, как на поверхности, так и внутри стерилизуемых объек­тов, микробиологи стерилизуют питательные среды, посуду, различные инструменты и другие необходимые предметы с целью не допустить развития посторонних микроорганизмов в исследуемых культурах. Термин «стерильность» имеет абсолютное значение.

Различают термическую и холодную стерилизацию. В микробиологии находят применение следующие способы термической стерилизации: прокаливание в пламени и обжигание, сухожаровая стерилизация (горячим воздухом), стерилизация насыщенным паром под давлением (автоклавирование), дробная стерилизация (тиндализация), кипячение, из методов холодной стерилизации микробиологи используют стерилизацию фильтрованием, ультрафиолетовыми лучами и газообразными средствами. Возможность и целесообразность применения того или иного способа определяются в первую очередь физико – химическими свойствами материала, подлежащего стерилизации, а иногда и целью исследования.

СТЕРИЛИЗАЦИЯ ПИТАТЕЛЬНЫХ СРЕД:

  • Стерилизация насыщенным паром под давлением (автоклавирование)

Это наиболее надежный и чаще всего применяемый способ стерилизации питательных сред. Он основан на нагревании материала насы­щенным водяным паром при давлении выше атмосферного. Известно, что температура пара возрастает при повышении его давления.

Совместное действие высокой температуры и пара обеспечивает особую эффективность данного способа. При этом погибают и вегетативные клетки, и споры микроорганизмов. Установлено, что споры большинства микроорганизмов не выдерживают и 5-минутную экспози­цию в насыщенном паре при 121°. Лишь споры некоторых почвенных микробов погибают при 1 атм только через 20 мин. Стерилизацию паром под давлением осуществляют в специальных герметически закрывающихся толстостенных аппаратах –автоклавах.

· Дробная стерилизация (тиндализация)

Дробная стерилизация применяется для обеззараживания сред, разрушающихся под действием температур выше 100°С. Этот прием был введен английским ученым Тиндалем. Принцип тиндализации заключается в том, что прогревают среду или ее компоненты без избыточного давле­ния несколько раз, и в период между прогреваниями дают прорасти жизнеспособным спорам. Предполагается, что развивающиеся из спор клетки погибают при последующем прогревании, не успев образовать новые споры. Прогревание можно осуществлять в парах кипящей воды, т. е. при 100 °С или, как говорят, текучим паром. Обработку текучим па­ром проводят 3-4 раза по 20-40 мин в aвтоклаве с незакрытой крышкой, в кипятильнике Коха или на водяной бане с хорошо пригнанной крышкой. Время прогревания отмечается с момента энергичного выделения пара.

  • Стерилизация фильтрованием

Стерилизация фильтрованием широко используется в микробиологической практике. Она применяется для субстратов, не выдерживающих нагревания, например, для жидких сред и растворов, содержа­щих термолабильные белки, витамины, сахара, некоторые антибиотики, а также для сывороток, летучих веществ, например некоторых углеводородов и других. Этим способом освобождают культуральную жидкость от клеток микроорганизмов, когда необходимо сохранить содержащиеся в ней продукты обмена в неизменном виде

2.Дезинфекция- средство уничтожения и подавления жизнедеятельности вредных и посторонних микроорганизмов, попадающих в сырье, воду, полуфабрикаты и на оборудование предприятий. Дезинфекцию применяют для уничтожения вегетативных клеток микроорганизмов, для уничтожения же всех спор обычно применяют стерилизацию.

Химические вещества, вызывающие прекращение размножение и гибель микроорганизмов, называются антисептиками. Различают антисептики и дезинфекторы, ими могут быть часто одни и те же вещества, применяемые в разных концентрациях.

Различия антисептиков и дезинфекторов.

Антисептики Дезинфекторы
Бактерицидное действие начинается после латентного периода через 3 и более часов после обработки Бактерицидное действие происходит немедленно после контакта с бактериями.
Более активны в средах, содержащих органические вещества. Более активны в средах, бедных органическими веществами.
Даже в больших количествах неактивны после окончания фазы активного размножения микробной культуры. Оказывают бактерицидное действие на любой стадии развития микробной культуры.
Активны по отношению к вегетативным формам. Активны по отношению к спорам и вегетативным формам.
Снижение поверхностного натяжения не всегда усиливает бактерицидное действие. Снижение поверхностного натяжение усиливает бактерицидное действие.
Могут возникнуть устойчивые формы микроорганизмов. Не вызывают появления устойчивых форм микроорганизмов.

Методы дезинфекции.

По виду действия агента методы делят на физические, химические и биологические.

Физические методы: нагревание (пропаривание, кипячение), обеспложивающая фильтрация, действие ультразвука и изотопов.

Химические методы заключаются в применении антисептиков и дезинфекторов.

Общие правила применения дезинфицирующих средств:

1) Перед использованием дезинфицирующих средств следует тщательно очистить оборудование и следить, чтобы на нем не осталось следов производственных жидкостей и культур микроорганизмов.

2) После дезинфекции обработанное оборудование тщательно промыть водой или пропаривать до полного удаления дезинфектантов.

3) Необходимо применять свежие дезинфицирующие растворы.

4) В зависимости от объекта, подлежащего дезинфекции, применяют то или иное дезинфицирующее средство.

Учитывая большую скорость размножения микроорганизмов и трудность их уничтожения при значительном обсеменении оборудование после окончания работы необходимо всегда тщательно промывать. Вначале его промывают теплой водой, но не горячей во избежание свертывания белков, которые затем плохо удаляются. Затем емкости оборудования очищаются механически, обрабатываются горячей водой и дезинфицирующим раствором и снова горячей водой.

Требования к дезинфицирующим средствам:

1) Энергичное действие при минимальных концентрациях;

2) Растворение в воде;

3) Эффективность действия при небольшой экспозиции;

4) Отсутствие запаха и вкуса;

5) Отсутствие токсичного действия на организм человека;

6) Отсутствие коррозирующего действия на материал оборудования;

3. Дезинфицирующие средства относят к различным классам соединений, их делят на:

1) Растворы кислот, солей и щелочей. Наиболее часто применяют 0,1% раствор каустической соды (NaOH), 1% раствор кальцинированной соды (Na2CO3) и известковое молоко (Ca).

2) Галогены и их производные. Из них широко применяют хлор в виде газа, гипохлориты, хлорную известь, хлорамин.

3) Соли тяжелых металлов. Применяют соли ртути, серебра, меди в виде органических и неорганических соединений. Эти вещества главным образом оказывают коагулирующее действие на белки микроорганизмов.

4) Фенол и его производные оказывают коагулирующее и частично растворяющее действие

5) Четвертичные аммонийные соли – соединения, вызывающие растворение бактериальных клеток (катапин).

6) Газообразные вещества (сернистый ангидрид, окись этилена).

Биологические методы основаны на использовании антибиотиков: продуценты актиномицеты, плесневые грибы и бактерии.

Способы определения антибиотической активности. В чашку Петри с анализируемой средой производят посев чертой продуцента антибиотика. Перпендикулярно к этому посеву высевают тест-культуры определенной группы микроорганизмов (грам-положительные, грам-отрицательные, плесени, дрожжей). Эти посевы культивируют и смотрят степень роста тест-культур и их реакцию на выделение антибиотиков.

4. Методы обеззараживания воды. Методы обеззараживания подразделяются на физические и химические. Наиболее применимы химические методы, они заключаются в обработке воды химическим веществом, обладающим бактерицидным действием. Это вещество должно быть нетоксично и в концентрации, применяемой для обеззараживания воды, не оказывать вредного действия на организм человека.

Наиболее широко распространено хлорирование – полное обеззараживание воды. Существует прямой и непрямой способ хлорирования. При непрямом способе хлор подают в воду, раствор, содержащий 3 – 5% летучего хлора, служит дезинфицирующим агентом для очистки остальной воды. При прямом способе хлорирования дозу очищенного газообразного хлора вводят непосредственно в воду через мелкопористый фильтр. Дозировка хлора зависит от реакции среды, жесткости и содержания органических веществ в воде.

Основными недостатками хлорирования являются:

1) необходимый контроль за дозировкой хлора;

2) если в воде содержатся органические соединения, то хлор образует с ними вещества, которые придают воде стойкий привкус;

3) контакт хлора с водой должен быть не менее 30 минут, поэтому необходимы специальные промежуточные резервуары для хлорирования;

4) обеззараживающее действие хлора не уничтожает споры;

Катадионовый метод: серебро растворяют на электродах при помощи постоянного тока. Бактерицидными являются растворы с содержанием серебра 10 – 15 мкг в 1 л воды.

Озонирование: в присутствии 5 – 5,5 мл озона в 1 л воды погибают многие микроорганизмы, для уничтожения спор плесневых грибов требуется концентрация 8,5 мл/л озона.

ЛЕКЦИЯ 10.

ЛЕКЦИИ

по дисциплина МИКРОБИОЛОГИЯ

ЛЕКЦИЯ №1.

Микробиология в пищевой промышленности.

Наши рекомендации