Методы выявления генных мутаций

Сложность выявления генных мутаций связана, во-первых, с рецессивностью большинства мутаций (вероятность их фенотипического проявления ничтожно мала), а во вторых с летальностью многих из них (мутанты не выживают).

Все множество методов выявления генных мутаций можно разделить на две группы: методы генетического анализа и биохимические методы.

1. Методы генетического анализа основаны на скрещивании возможных носителей мутации с тестерными линиями (линиями-анализаторами). Самый простой метод – это скрещивание носителей предполагаемой мутации с соответствующей рецессивно-гомозиготной линией, т.е. обычное анализирующее скрещивание.

Однако этот метод не позволяет выявить неизвестные мутации, а также летальные мутации. Поэтому создаются специальные тестерные линии для учета летальных мутаций.

Например, у мушки дрозофилы синтезирована тестерная линия М–5 (Мёллер–5), которая характеризуется особой структурой X–хромосом у самок. В этих хромосомах имеются аллели с определенным фенотипическим проявлением (доминантный аллель B – полосковидные глаза; рецессивный аллель wa – абрикосовые глаза; кроме того, имеется еще один аллель – sc, контролирующий отсутствие щетинок, но он в анализе обычно не учитывается). В хромосомах М–5 изменен порядок генов: имеется одна большая инверсия и одна малая, расположенная внутри большой (инверсии будут рассмотрены ниже); такое строение хромосом исключает появление кроссоверных особей при скрещивании мушек М–5 с другими линиями.

Для выявления мутаций используются самцы дикого типа – с нормальными X–хромосомами (аллели В+ и w+ – нормальные красные глаза, sc+ – нормальные щетинки; нормальный порядок генов). Эти самцы подвергаются обработке мутагенами (факторами, повышающими частоту мутаций). В результате в их половых клетках часть X–хромосом мутирует, т.е. в них возникают мутации. Обработанные самцы скрещиваются с самками М–5. В первом поколении (F1) все самки имеют полосковидные темно-красные глаза, а самцы – абрикосовые полосковидные глаза. Кроме того, часть самок получает от отцов по нормальный X–хромосоме, а часть – по мутантной X–хромосоме. Все самцы получают от матерей М–5 только немутантные хромосомы с аллелями В и wa. В F1 рецессивные мутации у самок, даже если они есть, не дают летального эффекта, поскольку они находятся в гетерозиготном состоянии: мутантная X–хромосома дикого типа от отца сочетается с немутантной М–5–хромосомой от матери.

Затем гибриды первого поколения скрещиваются между собой, и потомство каждой самки выращивается отдельно. Часть самок несет немутантную X–хромосому дикого типа, и в их потомстве обнаруживаются немутантные самцы дикого типа. Однако некоторая часть самок несет мутантную X–хромосому дикого типа с летальной мутацией; соответственно их сыновья, получившие такие хромосомы, не выживают, и самцы дикого типа в потомстве самок–носительниц не обнаруживаются.

Ниже приведены схемы скрещивания, иллюстрирующие принцип использования метода Мёллер–5 (символом l обозначены летальные мутации).

Р: ♀ wa B // wa B × ♂ w+ B+ // Y – обработка самцов
  абрикосовые полосковидные красные нормальные – окраска и форма глаз
GP: wa B   w+ B+ – немутантная X –хромосома
      w+ B+ l – мутантная X –хромосома
      Y – Y–хромосома
F1: ♀ w+ B+ // wa B ♀ w+ B+ l // wa B ♂ wa B // Y
  красные полосковидные глаза; без летальных мутаций красные полосковидные глаза; носители летальных мутаций абрикосовые полосковидные глаза

1 вариант скрещивания – без летальных мутаций

F1: ♀ w+ B+ // wa B × ♂ wa B // Y    
  красные полосковидные глаза   Абрикосовые полосковидные глаза    
G1: w+ B+   wa B    
  wa B   Y    
F2: ♀ w+ B+ // wa B ♀ wa B // wa B ♂ w+ B+ // Y ♂ wa B // Y
  Красные полосковидные глаза абрикосовые полосковидные глаза красные нормальные глаза абрикосовые полосковидные глаза
                 

2 вариант скрещивания – при наличии летальных мутаций

F1: ♀ w+ B+ l // wa B × ♂ wa B // Y  
  красные полосковидные глаза   абрикосовые полосковидные глаза  
G1: w+ B+ l   wa B  
  wa B   Y  
F2: ♀ w+ B+ l // wa B ♀ wa B // wa B ♂ w+ B+ l // Y ♂ wa B // Y
  красные полосковидные глаза абрикосовые полосковидные глаза самцы не обнаруживаются (летали) абрикосовые полосковидные глаза

В настоящее время, кроме тестерной линии М–5 используются и другие тестерные лини мушек дрозофил и других модельных объектов. Например, существуют тест-системы, позволяющие выявлять мутации X-хромосомах самцов в первом же поколении, а также мутации в аутосомах. Применение этих линий позволяет изучать закономерности мутационного процесса, однако классический генетический анализ далеко не всегда можно использовать для выявления мутаций в популяциях человека и многих других организмов.

2. Биохимические методы выявления мутаций исключительно разнообразны и основаны на применении различных методик.

а). Методики, основанные на выявлении определенных биохимических продуктов мутантных генов. Легче всего выявлять мутации по изменению активности ферментов или по утрате какого-либо биохимического признака. Например, у микроорганизмов на селективных питательных средах выявляются ауксотрофные формы, не способные синтезировать определенные вещества (по сравнению с нормальными, прототрофными формами).

б). Методики, основанные на непосредственном выявлении измененных нуклеиновых кислот и белков с помощью гель-электрофореза в сочетании с другими методиками (блот-гибридизации, авторадиографии).

Наши рекомендации