Филогенетический апоптоз участвует в удалении рудиментарных структур у эмбриона, например, пронефроса
78. 78.Клеточный цикл включает строго детерминированный ряд последовательных процессов, согласно позиции Hartwellа, 1995. Клетка должна между двумя последовательными делениями удвоить все свои компоненты и свою массу. Таким образом клеточный цикл составляют два периода:
1) период клеточного роста, называемый " интерфаза ", и
2) период клеточного деления, называемый " фаза М " (от слова mitosis). В свою очередь, в каждом периоде выделяют несколько фаз (рис.3).
Обычно интерфаза занимает не меньше 90% времени всего клеточного цикла. Например, у быстро делящихся клеток высших эукариот последовательные деления происходят один раз в 16-24 часа, и каждая фаза М длится 1-2 часа. Большая часть компонентов клетки синтезируется на протяжении всей интерфазы, это затрудняет выделение в ней отдельных стадий по мнению Pardee, 1989. В интерфазе выделяют фазу G1, фазу S и фазу G2. Период интерфазы, когда происходит репликация ДНК клеточного ядра, был назван " фаза S " (от слова synthesis). Период между фазой М и началом фазы S обозначен как фаза G1 (от слова gap - промежуток), а период между концом фазы S и последующей фазой М - как фаза G2. Период клеточного деления (фаза М) включает две стадии: митоз (деление клеточного ядра) и цитокинез (деление цитоплазмы). В свою очередь, митоз делится на пять стадий (рис.3), In vivo эти шесть стадий образуют динамическую последовательность. Описание клеточного деления базируется на данных световой микроскопии в сочетании с микрокиносъемкой и на результатах световой и электронной микроскопии фиксированных и окрашенных клеток.
Повторяющаяся совокупность событий, обеспечивающих деление эукариотических клеток, получила название клеточного цикла. Продолжительность клеточного цикла зависит от типа делящихся клеток. Некоторые клетки, например, нейроны человека, после достижения стадии терминальной дифференцировки прекращают свое деление вообще. Клетки легких, почек или печени во взрослом организме начинают делиться лишь в ответ на повреждение соответствующих органов. Клетки эпителия кишечника делятся на протяжении всей жизни человека. Даже у быстро пролиферирующих клеток подготовка к делению занимает около 24 ч. Клеточный цикл разделяют на стадии: Митоз - М-фаза, деление клеточного ядра. G1 -фаза период перед синтезом ДНК. S-фаза - период синтеза (репликации ДНК). G2-фаза - период между синтезом ДНК и митозом. Интерфаза - период, включающий в себя G1 -, S- и G2-фазы. Цитокинез - деление цитоплазмы. Точка рестрикции, R-point - время в клеточном цикле, когда продвижение клетки к делению становится необратимым. G0 фаза - состояние клеток, достигших монослоя или лишенных фактора роста в ранней G1 фазе.
Делению клетки (митозу или мейозу) предшествует удвоение хромосом, которое происходит в периоде S клеточного цикла (рис.1). Период обозначают первой буквой слова synthesis - синтез ДНК. С момента окончания периода S до завершения метафазы ядро содержит в четыре раза больше ДНК, чем ядро сперматозоида или яйцеклетки, а каждая хромосома состоит из двух идентичных сестринских хроматид. Во время митоза хромосомы конденсируются и в конце профазы или начале метафазы становятся различимыми при оптической микроскопии. Для цитогенетического анализа обычно используют препараты именно метафазных хромосом.
В начале анафазы центромеры гомологичных хромосом разъединяются, и хроматиды расходятся к противоположным полюсам митотического веретена. После того как к полюсам отойдут полные наборы хроматид (с этого момента их называют хромосомами), вокруг каждого из них образуется ядерная оболочка, формируя ядра двух дочерних клеток (разрушение ядерной оболочки материнской клетки произошло в конце профазы). Дочерние клетки вступают в период G1, и только при подготовке к следующему делению они переходят в период S и в них происходит репликация ДНК.
Клетки со специализированными функциями, длительное время не вступающие в митоз или вообще утратившие способность к делению, находятся в состоянии, называемом периодом G0. Большинство клеток в организме диплоидные - то есть имеют два гаплоидных набора хромосом (гаплоидный набор - это число хромосом в гаметах, у человека он составляет 23 хромосомы, а диплоидный набор хромосом - 46). В гонадах предшественники половых клеток сначала претерпевают ряд митотических делений, а затем вступают в мейоз - процесс образования гамет, состоящий из двух последовательных делений. В мейозе гомологичные хромосомы спариваются (отцовская 1-я хромосома с материнской 1-й хромосомой и т. д.), после чего в ходе так называемого кроссинговера происходит рекомбинация, то есть обмен участками между отцовской и материнской хромосомами. В результате качественно изменяется генетический состав каждой из хромосом.
В первом делении мейоза расходятся гомологичные хромосомы (а не сестринские хроматиды, как в митозе), вследствие чего образуются клетки с гаплоидным набором хромосом, каждая из которых содержит по 22 удвоенные аутосомы и одной удвоенной половой хромосоме. Между первым и вторым делениями мейоза нет периода S (рис.2, справа), а в дочерние клетки во втором делении расходятся сестринские хроматиды. В итоге образуются клетки с гаплоидным набором хромосом, в которых вдвое меньше ДНК, чем в диплоидных соматических клетках в периоде G1, и в 4 раза меньше - чем в соматических клетках по окончании периода S.
Апоптоз (apoptosis, греч. apo — без, из, от и ptosis — падение, гибель, умирание, «опадание листвы») - процесс запрограммированной гибели клеток, важный для регуляции дифференцировки, гомеостаза и преобразования органов и тканей. Посредством апоптоза внутренние или внешние факторы, активируя генетическую программу, приводят к гибели клетки и ее эффективному удалению из ткани; в частности апоптоз растительных клеток, пораженных инфекционным агентом, предотвращает дальнейшее распространение инфекции. Апоптоз характеризуется активацией нелизосомных эндогенных эндонуклеаз, которые расщепляют ядерную ДНК на маленькие фрагменты. Регуляция апоптоза осуществляется с помощью разнообразных молекулярных механизмов. У эукариот существуют как ингибиторы (Bcl-2, Bcl-xL, Mcl-1, Bcl-w, аденовирусный E1B), так и активаторы (Bax, Bak, Nbk / Bik1, Bad, Bcl-xS) апоптоза. Ключевые белки апоптоза - каспазы.
Аналогом апоптоза у прокариот можно считать гибель части клеточной популяции E. coli в условиях стазиса - остановки роста бактериальной популяции (напр., при исчерпании питательного субстрата).
Генетический механизм апоптоза основан в данном случае на работе двух генов (mazE и mazF), первый из которых кодирует стабильный цитотоксический белок, а второй — белок, который является нестабильным противоядием к первому. Апоптоз отличается от других форм гибели клеток и тканей - некроза и атрофии).
Термин"апоптоз", предложенный в 1972 г. английскими учеными J.F.R. Кеrr, А.Н. Wyllie и A.R. Currie, состоит из двух греческих слов и означает в буквальном смысле "отделение лепестков от цветов", а применимо к клетке - особый тип смерти путем разделения ее на части (" апоптозные тельца "), которые впоследствии фагоцитируются соседними клетками разного типа.
Термин "программированная клеточная смерть" отражает функциональное назначение этого процесса, представляющего естественную часть жизни многоклеточного организма, связанного с метаморфозом и развитием [ Hedgecock E.M., Salston J.E. 1983 , Oppenheim R.W. 1991 ].
В генетическом аппарате многоклеточных организмов - животных, растений и грибов заложена программа гибели клеток. Это специальная программа, которая при определенных обстоятельствах может привести клетку к гибели. При нормальном развитии эта программа направлена на удаление избыточно образовавшихся клеток -"безработных", а также клеток -"пенсионеров", переставших заниматься общественно полезным трудом. Другая важная функция клеточной гибели - удаление клеток -"инвалидов" и клеток- "диссидентов" с серьезными нарушениями структуры или функции генетического аппарата. В частности, апоптоз - один из основных механизмов самопрофилактики онкологических заболеваний [ Thompson ea 1995 ].
Апоптоз играет главную роль как в развитии так и в гомеостазе [ Steller ea 1997 ]. Клетки умирают от апоптоза в развивающемся эмбрионе в ходе морфогенеза или синантогенеза и во взрослых животных в ходе обновления тканей. Система программируемой клеточной смерти - существенный фактор иммунитета , поскольку гибель зараженной клетки может предотвратить распространение инфекции по организму. Формообразовательные процессы в онтогенезе, позитивная и негативная селекция Т- и В-лимфоцитов у животных, гипер-чувствительный ответ растений на вторжение патогена, осенний листопад - лишь несколько примеров программируемой клеточной смерти (апоптоза).
Многие инфекционные агенты выработали специальные меры для предотвращения преждевременной гибели зараженных клеток. Нарушения системы программируемой гибели клетки - причина серьезной патологии. Ослабление способности к апоптозу может вести к развитию злокачественных опухолей. Некоторые заболевания, в частности дегенеративные повреждения нервной системы, - результат избыточного апоптоза.
Исследуя нормальную и патологическую ткани, J.F.R. Кеrr с соавт. [ Kerr J.F.R., Wyllie A.H. 1972] обнаружили, что умирающие клетки делятся на 2 категории. В сильно поврежденных тканях преобладают процессы некроза , которые затрагивают целые клеточные поля и характеризуются пассивной дегенерацией клеток с набуханием и фрагментацией органелл, разрушением мембран, лизисом клеток, выходом внутриклеточного содержимого в окружающую ткань и развитием воспалительного ответа. Некроз всегда обусловлен грубой патологией, его механизмы не требуют затрат энергии, и предотвратить его можно только, устранив причину повреждения [Chen S. C., Soares H. D. 1996 , Chopp M., Li Y. 1996 , Sadoul R., Dubois-Dauphin M. 1996 ].
Определенные клетки организма обладают уникальными сенсорами, называемыми рецепторами смерти , расположенными на поверхности клеток. Рецепторы смерти детектируют присутствие межклеточных сигналов смерти и в ответ на это быстро запускают внутриклеточный механизм апоптоза.
Поскольку физиологическая роль апоптоза очень существенна, нарушения этого процесса могут быть весьма вредными. Так, несвоевременный апоптоз определенных мозговых нейронов оказывает влияние на образование нарушений, таких как болезни Альтцгеймера и Паркинсона , в то время как неспособность делящихся клеток перейти к апоптозу после случившихся существенных нарушений ДНК способствует развитию рака.
В развитии апоптоза выделяют 3 стадии: сигнальную (индукторную), эффекторную и деградации (деструкции). Индукторами апоптоза могут быть как внешние (внеклеточные) факторы, так и внутриклеточные сигналы. Сигнал воспринимается рецептором и далее последовательно передается молекулам-посредникам (мессенджерам) различного порядка и достигает ядра, где происходит включение программы клеточного "самоубийства" путем активации летальных и/или репрессии антилетальных генов. В ядре регистрируются первые морфологические признаки апоптоза - конденсация хроматина с формированием его осмиофильных скоплений, прилежащих к ядерной мембране. Позже появляются инвагинации (вдавления) ядерной мембраны, и происходит фрагментация ядра. В основе деградации хроматина лежит ферментативное расщепление ДНК [ Arends ea 1990 , Wyllie ea 1980 ]. Сначала образуются фрагменты, включающие 700, 200-250, 50-70 тыс. пар оснований, затем - фрагменты, содержащие 30-50 тыс. пар оснований. После реализации этого этапа процесс становится необратимым. Затем наступает межнуклеосомная дезинтеграция ДНК, т.е. разрывы нитей ДНК, находящихся между нуклеосомами. При этом образуются фрагменты, кратные по величине 180-190 пар оснований, что соответствует протяженности нити ДНК в пределах одной нуклеосомы. Отделившиеся фрагменты ядра, ограниченные мембраной, называют апоптотическими тельцами. В цитоплазме происходит расширение эндоплазматического ретикулума, конденсация и сморщивание гранул. Важнейшим признаком апоптоза является снижение трансмембранного потенциала митохондрий и выход в цитоплазму различных апоптогенных факторов (цитохрома с; прокаспаз 2, 3, 9; апоптоз-индуцирующего фактора). Именно нарушению барьерной функции митохондриальных мембран отводят ключевую роль в развитии многих типов апоптоза. Клеточная мембрана утрачивает ворсинчатость и образует пузыревидные вздутия. Клетки округляются и отделяются от субстрата. На поверхности клетки экспрессируются различные молекулы, распознаваемые фагоцитами - фосфосерин, тромбоспондин, десиалированные мембранные гликоконъюгаты, в результате чего происходит поглощение тела клетки другими клетками и его деградация в окружении лизосом фагоцитарных клеток
При оплодотворении число хромосом и содержание ДНК у зиготы становится таким же, как в соматической клетке в периоде G1. Период S в зиготе открывает путь к регулярному делению, характерному для соматических клеток.
79.Канцерогенез - это процесс развития опухолей любого типа. Последняя стадия опухолевого роста, с видимыми проявлениями , манифестация получил название малигнизации ( озлакочествление). Общие признаки малигнизации:
1. Клетка приобретает способность к бесконтрольному , безудержному размножению, делению
2. Гиперплазия параллельно с бесконтрольным делением клеток, наблюдается нарушение дифференцировки, остается незрелой, молодой ( это свойство называется анаплазией).
3. Автономность ( независимый от организма), от контролирующей, регулирующей процессы жизнедеятельности стимулов. Чем быстрее растет опухоль, тем как правило менее дифференцированны клетки и больше выражена автономность опухоли.
4. Доброкачественная опухоль характеризуется нарушением пролиферации, нет нарушения дифференцировки, при росте доброкачественной опухоли клетки просто увеличиваются в количестве, раздвигая или сдавливая окружающие ткани. А для злокачественных опухолей характерен так называемый инфильтративный рост, опухолевые клетки прорастают ( как клетки рака) разрушая окружающие ткани.
5. Способность к метастазированию. Метастазы - это клетки которые могут гематогенным, лимфогенным путем разноситься по всему организму и образовывать очаги опухолевого процесса. Метастазы - это признак злокачественной опухоли.
6. Опухолевая ткань оказывает на организм в целом негативное влияние : интоксикация, вызванная продуктами метаболизма опухоли, распада опухоли. Кроме того опухоль лишает организм необходимых питательных веществ, энергетических субстратов, пластических компонентов. Совокупность этих факторов называется раковой кахексией ( истощение всех систем жизнеобеспечения). Опухолевый процесс характеризуется патологической пролиферацией ( бесконтрольным делением клеток), нарушением дифференцировки клеток и атипизмом морфологическим, биохимическим и функциональным.
Атипизм опухолевых клеток характеризуется как возврат к прошлому то есть переходом на более древние, более простые пути метаболизма . существует множество признаков, отличающих нормальные клетки от опухолевых:
1. Морфологический атипизм. Главным является изменение клеточной мембраны:
У опухолевых клеток уменьшается площадь поверхности соприкосновения, уменьшается количество нексусов - контактов, обеспечивающих адгезивность клеточных мембран, меняется состав мембранных гликопротеидов - укорачиваются углеводные цепи. В клетке начинают синтезироваться , несвойственные зрелым клеткам эмбриональные белки, повышается количество фосфотирозинов. Все это приводит и к нарушению свойств контактного торможения, повышается лабильность, текучесть мембраны. В норме клетки, вступая в контакт друг с другом прекращают деление ( имеет место саморегуляция процесса деления). В опухолевых клетках отсутствие контактного торможения приводит к безудержной пролиферации.
Биохимический атипизм. Атипизм энергетического обмена проявляется в преобладании гликолиза - более древнего пути метаболизма. В опухолевых клетках наблюдается отрицательный эффект Пастера то есть интенсивный анаэробный гликолиз при смене анаэробных условиях на аэробные не снижается, а сохраняется ( усиление гликолиза в опухолевых клетках обуславливает их высокую выживаемость в условиях гипоксии). Опухоль активно поглощает питательные вещества. Наблюдается феномен субстратных ловушек, который заключается в повышении сродства фермента к субстрату ( глюкозе), в опухолевых клетках в 1000 раз повышается активность гексокиназ. Клетки опухоли являются также ловушкой для белка что также приводит к кахексии.
Преобладание гликолиза приводит к повышению концентрации молочной кислоты в клетках опухоли, характерен ацидоз, приводящий к нарушению жизнедеятельности самой клетки ( зона некроза расположена обычно в центре опухоли).
Атипизм регуляции роста и дифференцировки опухолевых клеток. Процессы роста , дифференцировки деления в норме находятся под контролем центральной эндокринной регуляции, которая осуществляется соматотропным гормоном, гормонами щитовидной железы, инсулином. Кроме этих общих факторов , в каждой ткани существуют свои факторы роста и дифференцировки ( фактор роста эпидермиса, тромбоцитарный фактор, интерлейкин). Индукция роста и дифференцировки начинается с взаимодействия фактора роста с рецептором фактора роста на клеточной мембране ( в опухолевой клетке этот этап может быть нарушен). На следующем этапе образуются вторичные посредники - циклический аденозин и гуанозинмонофосфат, причем для нормального роста и дифференцировки характерно преобладание циклического аденозинмонофосфата ( цАМФ). Образование циклического гуанозинмонофосфата сочетается с усилением пролиферации. В опухолевых клетках это типичный признак. На следующем этапе образуются активные протеинкиназы, функция которых фосфорилирование клеточных белков. В норме протеинкиназы фосфорилируют белки по серину, треонину, гистидину. В опухолевой ткани протеинкиназы тирозинзависимые, то есть фосфорилирование белков идет по тирозину. Стимуляция пролиферации связана с образованием белков, фосфорилированных по тирозину.
Регуляция роста и дифференцировки опухолевой клетки связана также с кальций-зависимой протеинкиназой. В норме кальций-зависимая протеинкиназа выполняет функцию модулятора, на уравновешивает процессы роста и дифференцировки. Для опухолевой клетки всегда характерна гиперреактивность кальцийзависимой протеинкиназы, при этом она выполняет роль индуктора пролиферации, она стимулирует образование фосфотирозина и усиливает бесконтрольное размножение клеток.
Теории развития опухолевого процесса.
В 1755 году английские ученые опубликовали исследование “О раке кожи мошонки у трубочистов”. Рак в этой работе рассматривался как профессиональное заболевание, которым страдали трубочисты в возрасте 30-35 лет ( до сих пор остается непонятным вопрос о локализации опухоли именно в мошонке).трубочисты очищая дымоходы втирали себе в кожу сажу и через 10-15 лет заболевали раком кожи. Объяснение механизмов развития этой формы рака послужило началом новой эры в исследовании опухолевого процесса. Было выяснено 2 основных фактора вызывающих развитие рака - постоянное раздражение, повреждение; действие определенных веществ ( сажи), которые были названы канцерогенами. Сейчас известно множество канцерогенных веществ. Эта модель заболевания была воспроизведена японскими учеными которые в течение года втирали в ухо кролика сажу и получили сначала доброкачественную (папиллому), а затем и злокачественную опухоль.
Канцерогенные вещества, которые находятся во внешней среде называются экзогенными канцерогенами: бензпирены, фенантрены, полициклические углеводороды, аминоазосоединения, анилиновые красители, ароматические соединения, асбест, боевые отравляющие вещества и многие др. Существует группа эндогенных канцерогенов - это вещества которые в организме выполняют определенную полезную функцию, но при определенных условиях способны вызывать рак. Это стероидные гормоны ( особенно эстрагены ), холестерин, витамин Д, продукты превращения триптофана. Рак был даже получен при введении таких веществ как глюкоза, дистиллированная вода при определенных условиях. Опухолевые процессы относятся к группе полиэтилогических заболеваний, то есть нет одного основного фактора, который бы способствовал развитию опухоли. Оно происходит при сочетании множественных условия и факторов, имеет значение наследственная предрасположенность или естественная резистентность. Выведены линии животных - нуллеров, никогда не заболевающих раком.
Действие канцерогенных веществ очень часто сочетается с действием физических факторов - механическим раздражением, температурным факторов ( в Индии рак кожи у носильщиков чанов с горячим углем, у северных народов наблюдается более высокая частота заболеваемости раком пищевода в связи с употреблением очень горячей пищи: горячей рыбы. У курильщиков способствуют развитию рака легких следующие факторы - высокая температура, которая создается при курении, хронические бронхиты - вызывающие активную пролиферацию, и в табаке содержатся метилхолантрены - сильные канцерогены. У моряков профессиональным заболеванием является рак кожи лица ( воздействие ветра, воды, ультрафиолетового излучения солнца), у рентгенологов повышена частота лейкозов.
Третья этиологическая группа - вирусы. Одним из основных подтверждений вирусной теории возникновения рака является прививка неклеточного фильтрата больного опухолью животного здоровому. Неклеточный фильтрат содержал вирус и здоровое животное заболевало. От больных кур перевивали здоровым курам лейкоз, удалось вызвать лейкоз почти у 100% кур. Описано свыше 20% различных вирусов, которые способны вызывать почти у всех экспериментальных животных различные формы опухолевого процесса. Была открыта передача вирусов, вызывающих рак, через молоко. Потомство низкораковых мышей подсаживали к высокораковой самке.(мыши принадлежали к низкораковым и высокораковым линиям. Низораковые линии не давали спонтанного заболевания раком, высокораковые почти в 100% случаев заболевали раком.). так был открыт фактор молока вирусной природы, был открыт вирус вызывающий заболевание и у человека - вирус Эпштейна-Барра ( вызываем лимфому).
Итак сформулированы 3 основных теории канцерогенеза, соответствующие трем основным этиологическим группам:
1.канцерогенные вещества
2.физические факторы
3.биологические факторы - вирусы.
Основные теории объясняющие патогенез рака это:
·мутационная теория канцерогенез, которая объясняет развитие опухолевого процесса как следствие мутации. Канцерогенные вещества, излучения вызывают мутационный процесс - изменяется геном, изменяется структура клеток, идет малигнизация.
·Эпигеномная теория канцерогенез. Наследственные структуры не изменены, нарушается функция генома. В основе эпигеномного механизма лежит дерепрессия в норме неактивных генов и депрессия активных генов. Основой опухолевого процесса по этой теории является дерепрессия древних генов.
·Вирусная теория. Вирусы длительно могут персистировать в клетках, находясь в латентном состоянии, под действием канцерогенов, физических факторов происходит их активация. Вирус встраивается в клеточный геном, внося дополнительную информацию в клетку, вызывая нарушение генома и нарушение жизнедеятельности клетки.
Все эти теории легли в основу современной концепции онкогенов. Это теория экспрессии онкогенов. Онкогены это гены , которые способствуют развитию опухолевого процесса. Онкогены были открыты в вирусах - вирусные онкогены , и аналогичные им открытые в клетках - клеточные онкогены ( src, myc, sis, ha-ras). Онкогены - это структурные гены кодирующие белки. В норме они неактивны, репрессированы, поэтому их называют протонкогены. При определенных условиях происходит активация или экспрессия онкогенов, синтезируются онкобелки, которые осуществляют процесс превращения нормальной клетки в опухолевую ( малигнизация). Обозначаются онкогены буквой Р, далее идет название гена, скажем ras и цифра - молекулярный вес белка в микродальтонах ( например Pras21).