Оценка технического состояния эксплуатируемых стальных конструкций

Москва Стройиздат 1989

Рекомендовано к изданию секцией научно-технического совета Укрниипроектстальконструкция Госстроя СССР.

пособие по проектированию усиления стальных конструкций (к СНиП II-23-81*)/Укрниипроектстальконструкция.-М.: Стройиздат, 1989.

Даны рекомендации, детализирующие основные положения по проектированию усиления стальных конструкций и проведению предпроектных обследований, технологии производства работ по их усилению.

Для инженерно-технических работников проектных организаций, высших учебных заведений и научно-исследовательских институтов.

Ил. 44, табл. 39.

Разработано Укрниипроектстальконструкция (д-р техн. наук А. В. Перельмутер, кандидаты техн. наук В. Б. Барский, Ю. С. Борисенко, В. А. Лимаренко, А. Н. Харин) при участии ЦНИИпроектстальконструкция им. Мельникова (кандидаты техн. наук И. В. Левитанский, В. И. Кудишин, Л. И. Гладштейн, И. В. Порядин, инженеры О. Н. Дмитриев, И. О. Эсаулов); ЦНИИСК им. Кучеренко (д-р техн. наук В. И. Трофимов, кандидаты техн. наук Г. Е. Бельский, Л. А. Гильденгорн); МИСИ им. Куйбышева (д-р техн. наук Е. И. Беленя, кандидаты техн. наук Б. Ю. Уваров, В. Н. Валь, П. Д. Окулов); Днепрпроектстальконструкция (инж. М. Б. Трапер); Ленпроектстальконструкция (инж. Р. С. Зекцер); Сибпроектстальконструкция (канд. техн. наук А. И. Конаков); ЛИСИ (кандидаты техн. наук Г. И. Белый, И. С. Ребров); МакИСИ (кандидаты техн. наук Е. В. Горохов, И. Р. Рухович); ДИСИ (д-р техн. наук А. В. Сильвестров, канд. техн. наук В. Д. Сургучев); НИСИ (д-р техн. наук В. В. Бирюлев, кандидаты техн. наук И. И. Крылов, А. И. Репин, инж. В. А. Чумаков); ЧПИ (кандидаты техн. наук В. Ф. Сабуров, К. А. Шишов, инж. В. И. Камбаров); ПолтИСИ (канд. техн. наук В. А. Пашинский); ЯГУ (канд. техн. наук В. В. Филиппов); Львовского политехнического института (канд. техн. наук М. Р. Бельский); Липецкого политехнического института (д-р техн. наук В. В. Горев, кандидаты техн. наук В. М. Путилин, В. И. Бабкин, инж. В. В. Зверев); СЗО Энергосетьпроект Мичэнерго СССР (канд. техн. наук К. П. Крюков, инж. Е. Н. Колбанев).

ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Настоящее Пособие дополняет, развивает и детализирует раздел «Дополнительные требования по проектированию конструкций зданий и сооружений при реконструкции» СНиП II-23-81* «Стальные конструкции».

Приведенные в Пособии положения распространяются на эксплуатируемые стальные конструкции, которые сохраняются (с усиленней или без него) в составе несущих конструкций зданий и сооружений после их реконструкции, а также на имеющие существенный физический износ стальные конструкции, для которых усиление является мерой, обеспечивающей их соответствие требованиям дальнейшей нормальной эксплуатации.

1.2. Элементы конструкций, вводимые дополнительно или взамен демонтируемых, должны проектироваться в соответствии с указаниями действующих норм и государственных стандартов.

Сохраняемые конструкции проверяются с учетом требований СНиП II-23-81* и дополнительных положений настоящего Пособия. В Пособии приведены отмененные нормативные документы (ГОСТы, СНиПы и др.), которые могут быть использованы только в качестве справочного материала.

1.3. При разработке проектной документации следует:

предусматривать меры по обеспечению надежности и долговечности зданий и сооружений;

принимать конструктивные решения и методы производства работ, реализуемые, как правило, без остановки производственного процесса в эксплуатируемых зданиях и сооружениях или совмещаемые по времени с технологическими остановками таких процессов;

учитывать перспективы развития производства, возможность повторных (в будущем) реконструкций и модернизаций;

принимать проектные решения, обеспечивающие экономное расходование материалов, топливных и энергетических ресурсов, снижение стоимости, трудоемкости и сокращение сроков выполнения работ по усилению;

учитывать условия производства работ по усилению (стесненность монтажной площадки, возможность использования механизмов, дополнительные мероприятия по технике безопасности и охране труда, необходимость контроля качества работ и т. п.).

1.4. Основные технические решения, принимаемые при разработке проектов реконструкции и усиления, следует обосновывать путем сравнения конкурентоспособных вариантов, учитывая при этом последствия (стесненность монтажной площадки или остановку производства на время выполнения работ по усилению).

1.5. Проектирование усиления стальных конструкций по Сравнению с обычным проектированием имеет ряд существенных особенностей, которые должны учитываться как при организации проектных работ, так и в процессе разработки и оформления проектной документации.

Основные из них:

проведение большого объема изысканий, связанных с обследованием усиливаемых конструкций, выявлением их фактического состояния, характеристик металла, из которого они выполнены, анализом причин появления имеющихся дефектов и повреждений и оценкой технического состояния конструкций;

выполнение расчетов по нескольким вариантам расчетных схем для оценки возможного отрицательного влияния обычно не учитываемых факторов (податливости или несмещаемости фундаментов, возможного проявления эффектов неразрезности, участия в работе каркаса ограждающих конструкций и оборудования и т. п.);

учет уровня фактической нагруженности усиливаемых под нагрузкой конструкций в процессе выполнения работ по усилению и учет влияния действующих во время усиления напряжений на несущую способность усиливаемой конструкции;

влияние последовательности и технологии выполнения работ по усилению на поведение усиливаемой конструкции, необходимость комплексного решения вопросов конструирования и выбора способа усиления с обязательным отражением этих вопросов в проектной документации.

1.6. Проектная документация с учетом изменения параметров и свойств конструкций и режимов эксплуатации должна охватывать следующие стадии работы конструкций:

А - предшествующая началу работ по усилению, на которой требуется проверить с учетом фактического состояния возможность эксплуатации конструкций до их усиления или замены и разработать в необходимых случаях временные мероприятия по содержанию конструкций и ограничению режимов эксплуатации;

Б - соответствующая периоду выполнения работ по усилению, на которой следует разработать необходимые мероприятия, обеспечивающие работоспособность конструкций по временной схеме;

В - соответствующая режиму эксплуатации конструкций после усиления, на которой необходимо обеспечить работу конструкций в изменившихся условиях.

В необходимых случаях, с целью выявления фактического положения конструкций, возможного роста деформаций и изменения напряженного состояния, проектом должно быть предусмотрено проведение инструментальных наблюдений за состоянием конструкций на стадиях А и Б, а также с использованием приборов и специальных контрольно-сигнальных устройств - на стадии В.

Рис. 1. Сжатый стержень с общим искривлением

а - нагруженный; б - ненагруженный; в - эквивалентный внецентренно-сжатый

2.37. Расчет на устойчивость сжатых стержней из двух спаренных уголков, расположенных в тавр и имеющих искривление в двух плоскостях более указанных в табл. 2 прил. 4, следует выполнять по формуле

оценка технического состояния эксплуатируемых стальных конструкций - student2.ru , (12)

где juv - коэффициент снижения несущей способности, определяемый по табл. 3-5 прил. 4 в зависимости от условной гибкости в плоскости симметрии сечения

оценка технического состояния эксплуатируемых стальных конструкций - student2.ru

и условных относительных стрелок искривлений в двух плоскостях

оценка технического состояния эксплуатируемых стальных конструкций - student2.ru ; оценка технического состояния эксплуатируемых стальных конструкций - student2.ru ;

при этом для элементов решетки ферм (кроме опорных раскосов и опорных стоек) следует учитывать упругое защемление в поясах, принимая в плоскости фермы коэффициент приведения расчетной длины m = 0,8 и используя данные табл. 4 прил. 4.

При определении стрелок искривления стержня в ненагруженном состоянии fx0 и fy0 следует руководствоваться указаниями п. 2.36.

Не допускается принимать значения коэффициентов juv больше значений коэффициентов j для центрально-сжатых стержней, приведенных в п. 5.3 СНиП II-23-81*.

2.38. Проверку устойчивости стержней из спаренных равнополочных уголков, имеющих кроме пространственного искривления оси еще и местные дефекты в виде вырезов или локальных погибей полок, для случая mx = my = 1 рекомендуется выполнять по формуле

оценка технического состояния эксплуатируемых стальных конструкций - student2.ru , (13)

где juv - коэффициент, определяемый по табл. 3 прил. 4; kосл - коэффициент, учитывающий влияние местного выреза полки, принимаемый равным; kосл = 1 - если вырез расположен на концевом участке стержня (в пределах узловой фасонки); по табл. 7 прил. 4 - если вырез расположен в пределах средней трети длины стержня; по интерполяции - в прочих случаях; А0 - площадь неослабленного сечения. Для стержней, не имеющих местных дефектов и повреждений, следует считать kосл = 1.

Учет влияния местного дефекта в виде локального искривления полок осуществляется путем перехода к эквивалентному вырезу с параметрами lосл и bосл, определяемыми по погиби lm и fом (табл. 8 прил 4).

2.39. Расчет сквозных стержней на устойчивость в плоскости соединительной решетки следует выполнять по общей формуле

оценка технического состояния эксплуатируемых стальных конструкций - student2.ru , (14)

где j - коэффициент, характеризующий устойчивость сквозного стержня в целом; jвет - коэффициент, учитывающий особенности работы ветвей на участках между узлами соединительной решетки.

Влияние общих искривлений сквозного стержня в целом учитывается при определении коэффициента j, который принимается по СНиП II-23-81* с учетом требований п. 2.41:

при центральном сжатии - в функции от условной приведенной гибкости

оценка технического состояния эксплуатируемых стальных конструкций - student2.ru ; (15)

при внецентренном сжатии - в функции от условной приведенной гибкости, вычисляемой по формуле (15) и относительного эксцентриситета

оценка технического состояния эксплуатируемых стальных конструкций - student2.ru , (16)

где ас - расстояние от главной оси сечения, перпендикулярной плоскости изгиба, до оси наиболее сжатой ветви.

2.40. Влияние локальных дефектов и повреждений, изменяющих условия работы отдельных ветвей (погибы ветвей и решетки, вырезы, расцентровки и т. п.), учитывается при определении коэффициента jвет который следует принимать по СНиП II-23-81* в зависимости от гибкости отдельной ветви на участке между узлами соединительной решетки в случае, если ветвь работает на центральное сжатие, и в функции от условной гибкости оценка технического состояния эксплуатируемых стальных конструкций - student2.ru приведенного относительного эксцентриситета mef для ветви, работающей на сжатие с изгибом. Значения mef принимаются с учетом требований пп. 2.42-2.44.

Для двухветвенных колонн с ветвями двутаврового и швеллерного сечения, работающими на центральное сжатие, коэффициент jвет вычисленный по СНиП II-23-81*, следует умножать на коэффициент, принимаемый:

оценка технического состояния эксплуатируемых стальных конструкций - student2.ru при оценка технического состояния эксплуатируемых стальных конструкций - student2.ru (17)

где оценка технического состояния эксплуатируемых стальных конструкций - student2.ru - условная гибкость ветви на участке между узлами соединительной решетки.

Для решетчатых колонн производственных зданий при отсутствии повреждений элементов решетки допускается принимать lef = l.

2.41. Сжатые сквозные элементы стальных конструкций в случае их общего искривления в плоскости соединительной решетки следует рассчитывать по аналогии со сплошностенчатыми (см. п. 2.35). Коэффициент k к относительному эксцентриситету вычисляется по формуле

оценка технического состояния эксплуатируемых стальных конструкций - student2.ru . (18)

2.42. Проверку устойчивости сквозного стержня, имеющего местное искривление ветви или ее ослабление на участке между узлами соединительной решетки, следует выполнять по формуле (14), причем коэффициент jвет должен вычисляться с учетом требований п. 2.40. Для сквозных стержней с дефектами, уменьшающими площадь поперечного сечения ветви, в расчет следует вводить геометрические характеристики сечения нетто.

2.43. Несущая способность сквозного стержня с дефектами или повреждениями раскосов оценивается проверкой устойчивости сквозного стержня в целом по рекомендациям п. 2.39 и дополнительной проверкой несущей способности поврежденного (дефектного) раскоса с требованиями пп. 2.35-2.38. При этом для раскосов из одиночных уголков в формулу (12) подставляются значения juv, принимаемые по табл. 6 прил. 4.

В случае невыполнения условия устойчивости для поврежденного раскоса следует считать, что он не участвует в работе и поперечная сила воспринимается ветвями, работающими на изгиб. При этом коэффициент jветв формуле (14) должен определяться как для сжато-изогнутого элемента. Приведенный относительный эксцентриситет для определения jвет допускается находить в зависимости от максимального изгибающего момента в ветви mвет вычисляемого по формуле

оценка технического состояния эксплуатируемых стальных конструкций - student2.ru , (19)

где Q - поперечная сила в сквозном стержне; lвет - длина ветви, принимаемая равной расстоянию между узлами соединительной решетки.

В тех случаях, когда несущая способность раскосов не обеспечивается в двух или более смежных панелях, эксплуатация сквозного стержня не допускается независимо от результатов других проверок.

2.44. Устойчивость сквозных стержней с дефектами изготовления в виде расцентровки раскосов (рис. 2), следует проверить по формуле (14), при этом коэффициент jвет должен определяться как для сжато-изогнутого элемента с учетом изгибающего момента Mвет вычисляемого по формуле

оценка технического состояния эксплуатируемых стальных конструкций - student2.ru , (20)

где t - величина расцентровки раскосов, равная половине расстояния между соседними пересечениями осей раскосов с осью ветви (рис. 2); kр - коэффициент, учитывающий влияние степени расцентровки c = t/l1 (l1 - проекция раскоса на ветвь) и принимаем

оценка технического состояния эксплуатируемых стальных конструкций - student2.ru ; (21)

kж - коэффициент, учитывающий влияние жесткости примыкающих раскосов, определяется по формуле

оценка технического состояния эксплуатируемых стальных конструкций - student2.ru , (22)

где IS - сумма погонных жесткостей элементов решетки, примыкающих к узлу; Iвет - погонная жесткость ветви.

оценка технического состояния эксплуатируемых стальных конструкций - student2.ru

Рис. 2. Сквозной стержень с расцентровкой решетки

Для колонн каркаса промышленных зданий допускается принимать в формуле (20) отношение kр/kж = 1.

При определении коэффициентов jвет следует учитывать форму эпюры изгибающих моментов по длине ветви между узлами соединительной решетки.

2.45. Расчетная проверка на хрупкую прочность для центрально и внецентренно растянутых элементов, а также зон растяжения изгибаемых элементов, имеющих технологические дефекты конструктивных форм, обладающих пониженной хладостойкостью (табл. 9 прил. 4), выполняется, если температура при эксплуатации может быть ниже критической температуры хрупкости (табл. 10 прил. 4). Проверку на прочность с учетом сопротивления хрупкому разрушению следует выполнять по формуле

оценка технического состояния эксплуатируемых стальных конструкций - student2.ru , (23)

где smax - наибольшее растягивающее напряжение в расчетном сечении элемента, определяемое по сечению нетто без учета коэффициентов динамичности и снижения, расчетных сопротивлений; b - коэффициент, учитывающий снижение конструкционной прочности стали при пониженных температурах.

Коэффициент b рекомендуется определять по формуле

оценка технического состояния эксплуатируемых стальных конструкций - student2.ru , (24)

где Т - расчетная отрицательная температура эксплуатации, принимаемая как средняя температура наиболее холодной пятидневки; Тcr - критическая температура хрупкости, определяемая по табл. 10 прил. 4 в зависимости от толщины элемента t, типа и модификации конструктивной формы (табл. 9 прил. 4); yт - коэффициент температурной зависимости, принимаемый 0,005 град -1 для стали марки Вст3кп, 0,0044 град -1 для стали марки 09Г2С.

Для низколегированных сталей других марок коэффициент yт допускается определять по линейной интерполяции в соответствии с расчетным сопротивлением Ryo, используя yт = 0,0041 при Ryo = 234 МПа и yт = 0,0028 при Ryo = 310 МПа.

Если условие (23) не выполняется или коэффициент b вычисляемый по формуле (24), оказывается меньше предельно допускаемой величины b* = Ryo/Ruo, дальнейшая эксплуатация конструкции не разрешается без применения специальных мер повышения хладостойкости или снижения напряжений.

Таблица 9

Марка стали Вст3 09Г2 10Г2С1 18Г2АФпо
DTcr

Специальные способы усиления конструкций с целью повышения их хладостойкости приведены в табл. 11 прил. 4. В случае применения специальных способов усиления, уменьшающих площадь расчетного сечения рабочего элемента, необходимо произвести проверку несущей способности элемента по ослабленному сечению. При недостаточной несущей способности площадь сечения элемента следует увеличить, соблюдая при этом требования п. 6.8 настоящего Пособия.

2.46. Учет влияния коррозионных повреждений на снижение сопротивляемости хрупкому разрушению при пониженных температурах (при остаточной после коррозии толщине 5 мм и менее, или если коррозионный износ превышает 25%) следует производить по изменению критической температуры хрупкости Tcr. В этом случае Tcr, определенную по табл. 10 прил. 4, следует увеличить на величину смещения DTcr, принимаемую по табл. 9 в зависимости от марки стали. Дальнейший расчет выполняется по указаниям п. 2.45 настоящего Пособия.

ОБЩИЕ ПОЛОЖЕНИЯ

3.1. С целью сокращения объемов работ по усилению, а в некоторых случаях и отказа от усиления необходимо выявлять и использовать резервы несущей способности сохраняемых конструкций путем:

уточнения усилий, действующих в перенапряженных элементах, за счет учета пространственной работы каркаса; фактических условий соединения и закрепления, учета фактических значений нагрузок, воздействий и их сочетаний;

уточнения прочностных характеристик материала конструкций и соединений, фактических размеров сечений и элементов;

включения в работу ограждающих конструкций или других вспомогательных элементов зданий и сооружений.

С этой целью рекомендуется проведение мероприятий по улучшению условий работы несущих конструкций таких, как:

изыскание возможности уменьшения нагрузок, действующих на все здание или отдельные элементы его (ограничение грузоподъемности кранов, их сближения между собой, ограничение хода тележки, изменение схемы расположения кранов на подкрановых путях, изменение конфигурации кровли для уменьшения снеговых мешков, мероприятия по борьбе с отложением промышленной пыли и т. д.);

уменьшение нагрузок от веса ограждающих конструкций путем замены их более легкими, в особенности в тех случаях, когда замена ограждающих конструкций связана с их неудовлетворительным состоянием.

Мероприятия по уменьшению крановых и других технологических нагрузок не должны ухудшать условия основного производства и должны быть обязательно согласованы со службой эксплуатации, включая приемы и методы контроля за уровнем нагрузок.

3.2. Основными способами усиления конструкций являются:

увеличение площади поперечного сечения отдельных элементов конструкции;

изменение конструктивной схемы всего каркаса или отдельных элементов его, в результате чего меняется расчетная схема;

регулирование напряжений.

Каждый из этих способов может применяться самостоятельно или в комбинации с другим. При выборе способа усиления и разработке проекта усиления необходимо учитывать требования монтажной технологичности.

3.3. При конструктивном оформлении усиления путем увеличения сечений необходимо:

обеспечить надежную совместную работу элементов усиления и усиливаемой конструкции, в том числе требования по местной устойчивости (размеры свесов, отгибов) и неискажаемости сечения (установка в необходимых случаях ребер, диафрагм и т. п.);

не принимать решений, затрудняющих проведение мероприятий по антикоррозионной защите, в особенности ведущих к щелевой коррозии или образованию замкнутых полостей, применяя в необходимых случаях герметизацию щелей;

назначать места обрыва элементов усиления из условия работы неусиленных сечений при действии расчетных нагрузок в упругой стадии, не допуская резких концентраторов напряжений в указанных местах;

учитывать наличие конструктивного оформления узлов, ребер жесткости, прокладок и т. п., а также допустимость увеличения габаритов строительных конструкций;

обеспечивать технологичность производства работ по усилению, в частности, доступность сварки, возможность сверления отверстий, закручивания болтов и т. п.

3.4. При усилении конструкций путем изменения конструктивной схемы требуется:

учитывать перераспределение усилий в конструкциях, элементах, узлах, а также в опорах, включая дополнительные проверки фундаментов;

учитывать разность температур, если существующие и новые конструкции могут эксплуатироваться в разных температурных режимах, а также температурный режим при замыкании статически неопределимых систем;

предусматривать в конструктивных решениях элементов и узлов возможность компенсации несовпадения размеров существующих и новых конструкций.

3.5. Способ усиления конструкций, предусматривающий регулирование напряжений, позволяет уменьшить усилия, действующие в конструкции. Преимущество его состоит также в том, что усиление может производиться без разгрузки конструкции и остановки технологического процесса.

3.6. Элементы усиления необходимо проектировать, как правило, ориентируясь на полное изготовление их в заводских условиях. В особых случаях допускается изготовление деталей усиления с припуском и последующей обработкой на месте установки.

Присоединение деталей усиления к конструкциям выполняется с помощью сварки, на болтах класса точности А и В или высокопрочных. В случае опасности возникновения хрупкого или усталостного разрушения присоединение осуществлять на высокопрочных болтах или болтах класса точности А. При соответствующем обосновании допускается применение дюбелей и самонарезающих винтов.

3.7. Марку стали элементов усиления следует назначать по табл. 50 СНиП II-23-81 * с учетом качества стали усиливаемой конструкции. Если эти конструкции выполнены без сварки и отсутствуют данные о свариваемости стали, то для их усиления сварку можно применять только после проведения оценки свариваемости.

3.8. Применяемая для элементов усиления сталь, как правило, не должна уступать по качеству металлу усиливаемых конструкций (по механическим свойствам, вязкости и свариваемости).

При усилении конструкций, эксплуатируемых в агрессивной среде, коррозионная стойкость металла элементов усиления должна быть не ниже стойкости металла усиливаемой конструкции.

УСИЛЕНИЕ БАЛОК

3.9. Выбор способа усиления определяется:

условиями опирания на балку элементов перекрытий или покрытий (по верхнему или нижнему поясу);

возможностью увеличения строительной высоты балки и наличием пространства для размещения элементов усиления;

возможностью выполнения работ без остановки производства или во время технологических перерывов;

технологическими возможностями изготовления и монтажа элементов усиления.

3.10. При усилении балок путем увеличения сечения (рис. 3) наиболее рациональными по расходу стали являются двусторонние симметричные или близкие к симметричным схемы усиления «а» - «е»с расположением элементов усиления по возможности дальше от центра тяжести неусиленного сечения балки.

При опирании настилов по верхнему поясу балки рекомендуются схемы «в»-«к», при этом несимметричное усиление по схеме «и» эффективно только при использовании упругопластической стадии работы материала существующей конструкции или при регулировании усилий, в остальных случаях более целесообразна схема одностороннего усиления «к» со значительным увеличением высоты сечения. Усиление составных сварных балок, имеющих ребра жесткости, с использованием схемы «в» и «г» требует либо вырезки ребер, либо подгонки элементов усиления, поэтому более рациональны в данном случае схемы «д» и «е», а при необходимости увеличения прочности верхней части стенки (например, в случае передачи сосредоточенных нагрузок) может быть рекомендована схема «ж».

3.11. Усиление балок путем изменения конструктивной схемы (рис. 4) мало зависит от места опирания плит настила, однако при усилении по схемам «а» и «б» путем превращения разрезной конструкции в неразрезную требуется возможность доступа к узлам сопряжения.

Установка дополнительных подкосов (схемы «в» и «г») возможна при наличии свободного пространства под балками.

оценка технического состояния эксплуатируемых стальных конструкций - student2.ru

Рис. 3. Усиление балок путем увеличения сечений

а-к - схемы усиления

Использование этих схем зависит также от способов усиления колонн и фундаментов.

При наличии свободного пространства под центральной частью балки эффективными могут быть схемы «д» и «е» с одно- или двустоечным шпренгелем. При использовании этих схем следует обеспечить конструктивные методы раскрепления точек перегиба шпренгеля из плоскости системы.

Рекомендуется также способы усиления балок с помощью дополнительных затяжек (схемы «ж» и «з») и подведения дополнительных балочных конструкций (схемы «и», «к») для усиления прогонов рациональна схема «л» с подведением дополнительных опор, передающих нагрузку на параллельно устанавливаемые двухконсольные подпруги.

оценка технического состояния эксплуатируемых стальных конструкций - student2.ru

Рис. 4. Усиление балок путем изменения их конструктивной схемы

а-л - схемы усиления

Практически во всех случаях усиления с изменением конструктивных схем целесообразно использование методов активного регулирования усилий для включения в работу новых элементов.

оценка технического состояния эксплуатируемых стальных конструкций - student2.ru

Рис. 5. Установка наклонных ребер жесткости

а-д - без пригонки к поясам; б-г, е - с пригонкой

3.12. Если при увеличении нагрузок не обеспечена прочность стенки по срезу или ее устойчивость, то рекомендуется установка дополнительных поперечных, продольных или наклонных ребер жесткости. Наклонные ребра жесткости (рис. 5) могут использоваться как без пригонки к поясам балки, так и с пригонкой, в первом случае они считаются не работающими на поперечную силу и служат только для обеспечения местной устойчивости, во втором - значительно снижают касательные напряжения в стенке.

При проверке дополнительных ребер рекомендуется использовать одностороннее расположение ребер и швы минимального катета. Диагональные ребра, пригнанные к поясам, рекомендуется проектировать парными (двусторонними) из полосовой стали или уголков с креплением к полкам и вертикальным ребрам по типу схем «в» и «е» на рис. 5 и устанавливать их вдоль сжатой диагонали отсека.

УСИЛЕНИЕ СТРОПИЛЬНЫХ ФЕРМ

3.18. При усилении стропильных ферм путем увеличения сечений стержней следует стремиться к сохранению центровки в узлах ферм. При усилении сжатых стержней элементы усиления целесообразно располагать таким образом, чтобы максимально увеличить радиус инерции сечения, при этом их можно не заводить на фасонки, если обеспечена прочность неусиленного сечения. Элементы усиления растянутых стержней заводят на фасонки на длину, достаточную для передачи воспринимаемой ими части усилия.

оценка технического состояния эксплуатируемых стальных конструкций - student2.ru

Рис. 6. Усиление подкрановых балок

д-е - схемы усиления

3.19. При усилении прямолинейных стержней путем увеличения сечений (рис. 7) для сжатых стержней наиболее рациональны схемы «а», «в», «г». Удобна схема «б», поскольку швы выполняются в нижнем положении, но при этом существенно смещается центр тяжести сечения и, кроме того, при необходимости завести уголок усиления на фасонку (например, при усилении раскосов) в нем необходимо устроить прорезь. Использование схем «б» и «д» для усиления верхнего пояса может оказаться невозможным из-за опирания прогонов или панелей покрытия.

При усилении искривленных стержней могут быть использованы схемы «л» и «м», не требующие подгонки элементов усиления.

3.20. Усиление сварных швов в узлах крепления стержней стропильных ферм можно выполнять в необходимых случаях с использованием дополнительных фасонок (рис. 8, а, б). Усиление узлов клепаных ферм целесообразно производить с помощью сварки (если позволяет качество металла и швы воспримут все усилие) или же способом передачи усилия на уголковый коротыш и затем на фасонку через болты класса точности А (рис. 8, а).

оценка технического состояния эксплуатируемых стальных конструкций - student2.ru

Рис. 7. Усиление элементов стропильных ферм

а-м - схемы усиления

оценка технического состояния эксплуатируемых стальных конструкций - student2.ru

Рис. 8. Усиление узлов крепления стержней стропильных ферм

3.21. При усилении стропильных ферм путем изменения конструктивной схемы (рис. 9) обычно требуется и усиление отдельных стержней за счет увеличения их сечений.

Установка шпренгелей по схеме «а» уменьшает расчетные длины элементов верхнего пояса в плоскости фермы, но не влияет на их устойчивость из плоскости. При этом часто требуется провести усиление растянутых стержней.

Усиление по схеме «б» существенно снижает усилия во всех стержнях, за исключением двух средних раскосов, однако применение этой схемы очень ограниченно.

Превращение разрезных стропильных ферм в неразрезные (схема «в») с устройством стыков на опорах требует разборки кровли. Эту схему усиления целесообразно использовать при трех пролетах и более.

При наличии фонаря по среднему ряду колонн его элементы могут быть включены в совместную работу с фермами (схема «г»). Такое решение, как правило, требует усиления стоек и раскосов фонаря. Его эффективность зависит от; относительной ширины фонаря. Схема «д» применяется в случаях, когда затруднены работы внутри здания.

Усиление ферм одно- или двустоечным шпренгелем (схемы «е» и «ж»), а также усиление затяжкой по нижнему поясу (схема «и»)рационально при использовании в качестве затяжек высокопрочных элементов (например, стальных канатов).

оценка технического состояния эксплуатируемых стальных конструкций - student2.ru

Рис. 9. Усиление стропильных ферм путем изменения их конструктивной схемы

a-к - схемы усиления

3.22. Применение продольной распределительной конструкции (рис. 9, к) может быть рекомендовано при установке новых подвесных кранов, когда продольные вертикальные связи включают в работу на восприятие локальных нагрузок соседние стропильные фермы. Кроме того, установка дополнительных вертикальных связей по всей длине покрытия повышает надежность стропильных ферм, выполненных из кипящих сталей и эксплуатирующихся при отрицательных температурах.

Рис. 10. Усиление колонн путей увеличения сечений

а - симметричные без смещения центра тяжести; б - несимметричные со смещением центра тяжести

оценка технического состояния эксплуатируемых стальных конструкций - student2.ru

Рис. 11. Усиление колонн и поперечника в целом путем изменения конструктивной схемы

а-д - схемы усиления

3.28. Усиление колонн, стоек и других сжато-изогнутых элементов также может осуществляться введением в существующую схему дополнительных шарниров, если это уменьшит напряжение в усиливаемых конструкциях (рис. 13). При этом необходимо учитывать как возможное уменьшение изгибающих моментов, так и увеличение расчетной длины сжатого элемента. Используют также схемы усиления колонн и поперечника в целом, заключающиеся в замыкании шарниров.

3.29. При значительных горизонтальных нагрузках на здание и большом количестве перенапряженных колонн усиление их рекомендуется производить путем введения горизонтальных жестких конструкций (специально устраиваемых или используемых), передающих нагрузки на торцы здания. Конструкции торцов здания должны быть рассчитаны и законструированы с учетом восприятия нагрузок от всего здания. При длине здания более двух пролетов следует специально устраивать дополнительные поперечные вертикальные конструкции или связи, воспринимающие горизонтальные нагрузки и передающие их на фундаменты.

3.30. При увеличении усилий в колоннах требуется проверить несущую способность фундаментов и оснований.

оценка технического состояния эксплуатируемых стальных конструкций - student2.ru

Рис. 12. Усиление сплошных колонн

а-в - предварительно изогнутыми элементами с последующим выпрямлением; г - предварительно напряженным элементом

При недостаточной несущей способности опорной плиты ее усиление целесообразнее всего выполнять путем установки дополнительных ребер, уменьшающих размеры участков плиты.

При перенапряжении анкеров рекомендуется устанавливать дополнительные фундаментные болты, закрепив их в фундаментах или в дополнительной набетонке.

оценка технического состояния эксплуатируемых стальных конструкций - student2.ru

Рис. 13. Усиление путем введения в схему дополнительных элементов жесткости и шарниров

а - поперечный разрез; б, в - расчетные схемы соответственно до и после усиления; 1 - элементы жесткости; 2 - увеличение сечений; 3 - шарниры

ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К ТЕХНОЛОГИИ ВЫПОЛНЕНИЯ РАБОТ ПО УСИЛЕНИЮ

3.37. При разработке проекта усиления необходимо выбрать и отразить в рабочих чертежах принципиальные положения производства работ:

последовательность выполнения работ по усилению конструкции в целом и ее отдельных элементов, если эта последовательность сказывается на напряженно-деформированном состоянии конструкции;

увязку работ по усилению с технологическим процессом (ограничения по нагрузкам и воздействиям) и условиями их проведения (например, температурный режим);

меры по обеспечению прочности и устойчивости конструкций на всех этапах производства работ, включая указания об устройстве временных опор и раскреплений и требования к значениям монтажных нагрузок и воздействий;

перечень конкретных зон, узлов, конструктивных элементов и технологических операций, для которых требуется соблюдение определенной последовательности и параметров технологических процессов (режим сварки, регламент предварительного напряжения и т. п.);

перечень работ и операций, которые следует принимать по актам на скрытые работы, или требующих промежуточного контроля.

Эти указания детально рассматриваются в проекте производства работ, исходя из возможностей исполнителя, и согласуются с авторами проекта усиления.

3.38. Усиление конструкций с использованием способов (схем), впервые вн

Наши рекомендации